_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-sire 1.1.0
Propagated dependencies: r-systemfit@1.1-30 r-stringr@1.6.0 r-rsolnp@2.0.1 r-psych@2.5.6 r-numderiv@2016.8-1.1 r-matrixcalc@1.0-6 r-matrix@1.7-4 r-mass@7.3-65 r-magrittr@2.0.4 r-igraph@2.2.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SIRE
Licenses: GPL 3
Build system: r
Synopsis: Finding Feedback Effects in SEM and Testing for Their Significance
Description:

This package provides two main functionalities. 1 - Given a system of simultaneous equation, it decomposes the matrix of coefficients weighting the endogenous variables into three submatrices: one includes the subset of coefficients that have a causal nature in the model, two include the subset of coefficients that have a interdependent nature in the model, either at systematic level or induced by the correlation between error terms. 2 - Given a decomposed model, it tests for the significance of the interdependent relationships acting in the system, via Maximum likelihood and Wald test, which can be built starting from the function output. For theoretical reference see Faliva (1992) <doi:10.1007/BF02589085> and Faliva and Zoia (1994) <doi:10.1007/BF02589041>.

r-spup 1.4-0
Propagated dependencies: r-whisker@0.4.1 r-raster@3.6-32 r-purrr@1.2.0 r-mvtnorm@1.3-3 r-magrittr@2.0.4 r-gstat@2.1-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=spup
Licenses: GPL 3+
Build system: r
Synopsis: Spatial Uncertainty Propagation Analysis
Description:

Uncertainty propagation analysis in spatial environmental modelling following methodology described in Heuvelink et al. (2007) <doi:10.1080/13658810601063951> and Brown and Heuvelink (2007) <doi:10.1016/j.cageo.2006.06.015>. The package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model outputs. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques. Uncertain variables are described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is accommodated for. The MC realizations may be used as input to the environmental models called from R, or externally.

r-wals 0.2.6
Propagated dependencies: r-rdpack@2.6.4 r-mass@7.3-65 r-formula@1.2-5
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://github.com/kevhuy/WALS
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Weighted-Average Least Squares Model Averaging
Description:

This package implements Weighted-Average Least Squares model averaging for negative binomial regression models of Huynh (2024) <doi:10.48550/arXiv.2404.11324>, generalized linear models of De Luca, Magnus, Peracchi (2018) <doi:10.1016/j.jeconom.2017.12.007> and linear regression models of Magnus, Powell, Pruefer (2010) <doi:10.1016/j.jeconom.2009.07.004>, see also Magnus, De Luca (2016) <doi:10.1111/joes.12094>. Weighted-Average Least Squares for the linear regression model is based on the original MATLAB code by Magnus and De Luca <https://www.janmagnus.nl/items/WALS.pdf>, see also Kumar, Magnus (2013) <doi:10.1007/s13571-013-0060-9> and De Luca, Magnus (2011) <doi:10.1177/1536867X1201100402>.

r-fcps 1.3.5
Dependencies: pandoc@2.19.2
Propagated dependencies: r-mclust@6.1.2 r-ggplot2@4.0.1 r-datavisualizations@1.4.0
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://www.deepbionics.org/
Licenses: GPL 3
Build system: r
Synopsis: Fundamental Clustering Problems Suite
Description:

Over sixty clustering algorithms are provided in this package with consistent input and output, which enables the user to try out algorithms swiftly. Additionally, 26 statistical approaches for the estimation of the number of clusters as well as the mirrored density plot (MD-plot) of clusterability are implemented. The packages is published in Thrun, M.C., Stier Q.: "Fundamental Clustering Algorithms Suite" (2021), SoftwareX, <DOI:10.1016/j.softx.2020.100642>. Moreover, the fundamental clustering problems suite (FCPS) offers a variety of clustering challenges any algorithm should handle when facing real world data, see Thrun, M.C., Ultsch A.: "Clustering Benchmark Datasets Exploiting the Fundamental Clustering Problems" (2020), Data in Brief, <DOI:10.1016/j.dib.2020.105501>.

r-ggir 3.3-0
Propagated dependencies: r-zoo@1.8-14 r-unisensr@0.3.4 r-signal@1.8-1 r-read-gt3x@1.2.0 r-psych@2.5.6 r-lubridate@1.9.4 r-irr@0.84.1 r-ineq@0.2-13 r-ggirread@1.0.7 r-foreach@1.5.2 r-doparallel@1.0.17 r-data-table@1.17.8 r-actcr@0.4.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/wadpac/GGIR/
Licenses: ASL 2.0 FSDG-compatible
Build system: r
Synopsis: Raw Accelerometer Data Analysis
Description:

This package provides a tool to process and analyse data collected with wearable raw acceleration sensors as described in Migueles and colleagues (JMPB 2019), and van Hees and colleagues (JApplPhysiol 2014; PLoSONE 2015). The package has been developed and tested for binary data from GENEActiv <https://activinsights.com/>, binary (.gt3x) and .csv-export data from Actigraph <https://theactigraph.com> devices, and binary (.cwa) and .csv-export data from Axivity <https://axivity.com>. These devices are currently widely used in research on human daily physical activity. Further, the package can handle accelerometer data file from any other sensor brand providing that the data is stored in csv format. Also the package allows for external function embedding.

r-mcca 0.7.0
Propagated dependencies: r-rpart@4.1.24 r-rgl@1.3.31 r-proc@1.19.0.1 r-nnet@7.3-20 r-mass@7.3-65 r-e1071@1.7-16 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/gaoming96/mcca
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Multi-Category Classification Accuracy
Description:

It contains six common multi-category classification accuracy evaluation measures. All of these measures could be found in Li and Ming (2019) <doi:10.1002/sim.8103>. Specifically, Hypervolume Under Manifold (HUM), described in Li and Fine (2008) <doi:10.1093/biostatistics/kxm050>. Correct Classification Percentage (CCP), Integrated Discrimination Improvement (IDI), Net Reclassification Improvement (NRI), R-Squared Value (RSQ), described in Li, Jiang and Fine (2013) <doi:10.1093/biostatistics/kxs047>. Polytomous Discrimination Index (PDI), described in Van Calster et al. (2012) <doi:10.1007/s10654-012-9733-3>. Li et al. (2018) <doi:10.1177/0962280217692830>. We described all these above measures and our mcca package in Li, Gao and D'Agostino (2019) <doi:10.1002/sim.8103>.

r-pwev 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-weightedensemble@0.1.0 r-rumidas@0.1.3 r-rugarch@1.5-4 r-metrics@0.1.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PWEV
Licenses: GPL 3
Build system: r
Synopsis: PSO Based Weighted Ensemble Algorithm for Volatility Modelling
Description:

Price volatility refers to the degree of variation in series over a certain period of time. This volatility is especially noticeable in agricultural commodities, adding uncertainty for farmers, traders, and others in the agricultural supply chain. Commonly and popularly used four volatility models viz, GARCH, Glosten Jagannatan Runkle-GARCH (GJR-GARCH) model, exponentially weighted moving average (EWMA) model and Multiplicative Error Model (MEM) are selected and implemented. PWAVE, weighted ensemble model based on particle swarm optimization (PSO) is proposed to combine the forecast obtained from all the candidate models. This package has been developed using algorithm of Paul et al. <doi:10.1007/s40009-023-01218-x> and Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.

r-vdsm 0.1.1
Propagated dependencies: r-viridis@0.6.5 r-plyr@1.8.9 r-knitr@1.50 r-gridextra@2.3 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://cran.r-project.org/package=VDSM
Licenses: GPL 2+
Build system: r
Synopsis: Visualization of Distribution of Selected Model
Description:

Although model selection is ubiquitous in scientific discovery, the stability and uncertainty of the selected model is often hard to evaluate. How to characterize the random behavior of the model selection procedure is the key to understand and quantify the model selection uncertainty. This R package offers several graphical tools to visualize the distribution of the selected model. For example, Gplot(), Hplot(), VDSM_scatterplot() and VDSM_heatmap(). To the best of our knowledge, this is the first attempt to visualize such a distribution. About what distribution of selected model is and how it work please see Qin,Y.and Wang,L. (2021) "Visualization of Model Selection Uncertainty" <https://homepages.uc.edu/~qinyn/VDSM/VDSM.html>.

r-dipw 0.1.0
Propagated dependencies: r-rmosek@1.3.5 r-matrix@1.7-4 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=dipw
Licenses: GPL 3
Build system: r
Synopsis: Debiased Inverse Propensity Score Weighting
Description:

Estimation of the average treatment effect when controlling for high-dimensional confounders using debiased inverse propensity score weighting (DIPW). DIPW relies on the propensity score following a sparse logistic regression model, but the regression curves are not required to be estimable. Despite this, our package also allows the users to estimate the regression curves and take the estimated curves as input to our methods. Details of the methodology can be found in Yuhao Wang and Rajen D. Shah (2020) "Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders" <arXiv:2011.08661>. The package relies on the optimisation software MOSEK <https://www.mosek.com/> which must be installed separately; see the documentation for Rmosek'.

r-meta 8.2-1
Propagated dependencies: r-xml2@1.5.0 r-tibble@3.3.0 r-stringr@1.6.0 r-scales@1.4.0 r-readr@2.1.6 r-purrr@1.2.0 r-metafor@4.8-0 r-metadat@1.4-0 r-magrittr@2.0.4 r-lme4@1.1-37 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-compquadform@1.4.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=meta
Licenses: GPL 2+
Build system: r
Synopsis: General Package for Meta-Analysis
Description:

User-friendly general package providing standard methods for meta-analysis and supporting Schwarzer, Carpenter, and Rücker <DOI:10.1007/978-3-319-21416-0>, "Meta-Analysis with R" (2015): - common effect and random effects meta-analysis; - several plots (forest, funnel, Galbraith / radial, L'Abbe, Baujat, bubble); - three-level meta-analysis model; - generalised linear mixed model; - logistic regression with penalised likelihood for rare events; - Hartung-Knapp method for random effects model; - Kenward-Roger method for random effects model; - prediction interval; - statistical tests for funnel plot asymmetry; - trim-and-fill method to evaluate bias in meta-analysis; - meta-regression; - cumulative meta-analysis and leave-one-out meta-analysis; - import data from RevMan 5'; - produce forest plot summarising several (subgroup) meta-analyses.

r-picr 1.0.1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/javenrflo/picR
Licenses: GPL 3+
Build system: r
Synopsis: Predictive Information Criteria for Model Selection
Description:

Computation of predictive information criteria (PIC) from select model object classes for model selection in predictive contexts. In contrast to the more widely used Akaike Information Criterion (AIC), which are derived under the assumption that target(s) of prediction (i.e. validation data) are independently and identically distributed to the fitting data, the PIC are derived under less restrictive assumptions and thus generalize AIC to the more practically relevant case of training/validation data heterogeneity. The methodology featured in this package is based on Flores (2021) <https://iro.uiowa.edu/esploro/outputs/doctoral/A-new-class-of-information-criteria/9984097169902771?institution=01IOWA_INST> "A new class of information criteria for improved prediction in the presence of training/validation data heterogeneity".

r-seer 1.1.8
Propagated dependencies: r-urca@1.3-4 r-tsfeatures@1.1.1 r-tibble@3.3.0 r-stringr@1.6.0 r-randomforest@4.7-1.2 r-purrr@1.2.0 r-magrittr@2.0.4 r-future@1.68.0 r-furrr@0.3.1 r-forectheta@3.0 r-forecast@8.24.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://thiyangt.github.io/seer/
Licenses: GPL 3
Build system: r
Synopsis: Feature-Based Forecast Model Selection
Description:

This package provides a novel meta-learning framework for forecast model selection using time series features. Many applications require a large number of time series to be forecast. Providing better forecasts for these time series is important in decision and policy making. We propose a classification framework which selects forecast models based on features calculated from the time series. We call this framework FFORMS (Feature-based FORecast Model Selection). FFORMS builds a mapping that relates the features of time series to the best forecast model using a random forest. seer package is the implementation of the FFORMS algorithm. For more details see our paper at <https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp06-2018.pdf>.

r-carm 2.0.0
Propagated dependencies: r-mass@7.3-65 r-dplyr@1.1.4 r-arrangements@1.1.9
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CARM
Licenses: GPL 2+
Build system: r
Synopsis: Covariate-Adjusted Adaptive Randomization via Mahalanobis-Distance
Description:

In randomized controlled trial (RCT), balancing covariate is often one of the most important concern. CARM package provides functions to balance the covariates and generate allocation sequence by covariate-adjusted Adaptive Randomization via Mahalanobis-distance (ARM) for RCT. About what ARM is and how it works please see Y. Qin, Y. Li, W. Ma, H. Yang, and F. Hu (2024). "Adaptive randomization via Mahalanobis distance" Statistica Sinica. <doi:10.5705/ss.202020.0440>. In addition, the package is also suitable for the randomization process of multi-arm trials. For details, please see Yang H, Qin Y, Wang F, et al. (2023). "Balancing covariates in multi-arm trials via adaptive randomization" Computational Statistics & Data Analysis.<doi:10.1016/j.csda.2022.107642>.

r-ipfr 1.0.2
Propagated dependencies: r-tidyr@1.3.1 r-mlr@2.19.3 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/dkyleward/ipfr
Licenses: ASL 2.0
Build system: r
Synopsis: List Balancing for Reweighting and Population Synthesis
Description:

This package performs iterative proportional updating given a seed table and an arbitrary number of marginal distributions. This is commonly used in population synthesis, survey raking, matrix rebalancing, and other applications. For example, a household survey may be weighted to match the known distribution of households by size from the census. An origin/ destination trip matrix might be balanced to match traffic counts. The approach used by this package is based on a paper from Arizona State University (Ye, Xin, et. al. (2009) <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.723&rep=rep1&type=pdf>). Some enhancements have been made to their work including primary and secondary target balance/importance, general marginal agreement, and weight restriction.

r-moqa 2.0.0
Propagated dependencies: r-readr@2.1.6 r-psych@2.5.6 r-gplots@3.2.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MOQA
Licenses: AGPL 3
Build system: r
Synopsis: Basic Quality Data Assurance for Epidemiological Research
Description:

With the provision of several tools and templates the MOSAIC project (DFG-Grant Number HO 1937/2-1) supports the implementation of a central data management in epidemiological research projects. The MOQA package enables epidemiologists with none or low experience in R to generate basic data quality reports for a wide range of application scenarios. See <https://mosaic-greifswald.de/> for more information. Please read and cite the corresponding open access publication (using the former package-name) in METHODS OF INFORMATION IN MEDICINE by M. Bialke, H. Rau, T. Schwaneberg, R. Walk, T. Bahls and W. Hoffmann (2017) <doi:10.3414/ME16-01-0123>. <https://methods.schattauer.de/en/contents/most-recent-articles/issue/2483/issue/special/manuscript/27573/show.html>.

r-milr 0.4.1
Propagated dependencies: r-rcppparallel@5.1.11-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-piper@0.6.1.3 r-numderiv@2016.8-1.1 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/PingYangChen/milr
Licenses: Expat
Build system: r
Synopsis: Multiple-Instance Logistic Regression with LASSO Penalty
Description:

The multiple instance data set consists of many independent subjects (called bags) and each subject is composed of several components (called instances). The outcomes of such data set are binary or categorical responses, and, we can only observe the subject-level outcomes. For example, in manufacturing processes, a subject is labeled as "defective" if at least one of its own components is defective, and otherwise, is labeled as "non-defective". The milr package focuses on the predictive model for the multiple instance data set with binary outcomes and performs the maximum likelihood estimation with the Expectation-Maximization algorithm under the framework of logistic regression. Moreover, the LASSO penalty is attached to the likelihood function for simultaneous parameter estimation and variable selection.

r-spm2 1.1.3
Propagated dependencies: r-spm@1.2.3 r-sp@2.2-0 r-randomforest@4.7-1.2 r-nlme@3.1-168 r-gstat@2.1-4 r-glmnet@4.1-10 r-gbm@2.2.2 r-fields@17.1 r-e1071@1.7-16
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=spm2
Licenses: GPL 2+
Build system: r
Synopsis: Spatial Predictive Modeling
Description:

An updated and extended version of spm package, by introducing some further novel functions for modern statistical methods (i.e., generalised linear models, glmnet, generalised least squares), thin plate splines, support vector machine, kriging methods (i.e., simple kriging, universal kriging, block kriging, kriging with an external drift), and novel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods for spatial predictive modelling. For each method, two functions are provided, with one function for assessing the predictive errors and accuracy of the method based on cross-validation, and the other for generating spatial predictions. It also contains a couple of functions for data preparation and predictive accuracy assessment.

r-megb 0.2
Propagated dependencies: r-mass@7.3-65 r-gbm@2.2.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MEGB
Licenses: GPL 2
Build system: r
Synopsis: Gradient Boosting for Longitudinal Data
Description:

Gradient boosting is a powerful statistical learning method known for its ability to model complex relationships between predictors and outcomes while performing inherent variable selection. However, traditional gradient boosting methods lack flexibility in handling longitudinal data where within-subject correlations play a critical role. In this package, we propose a novel approach Mixed Effect Gradient Boosting ('MEGB'), designed specifically for high-dimensional longitudinal data. MEGB incorporates a flexible semi-parametric model that embeds random effects within the gradient boosting framework, allowing it to account for within-individual covariance over time. Additionally, the method efficiently handles scenarios where the number of predictors greatly exceeds the number of observations (p>>n) making it particularly suitable for genomics data and other large-scale biomedical studies.

r-mpge 1.0.0
Propagated dependencies: r-purrr@1.2.0 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/ArunabhaCodes/MPGE
Licenses: GPL 3
Build system: r
Synopsis: Two-Step Approach to Testing Overall Effect of Gene-Environment Interaction for Multiple Phenotypes
Description:

Interaction between a genetic variant (e.g., a single nucleotide polymorphism) and an environmental variable (e.g., physical activity) can have a shared effect on multiple phenotypes (e.g., blood lipids). We implement a two-step method to test for an overall interaction effect on multiple phenotypes. In first step, the method tests for an overall marginal genetic association between the genetic variant and the multivariate phenotype. The genetic variants which show an evidence of marginal overall genetic effect in the first step are prioritized while testing for an overall gene-environment interaction effect in the second step. Methodology is available from: A Majumdar, KS Burch, S Sankararaman, B Pasaniuc, WJ Gauderman, JS Witte (2020) <doi:10.1101/2020.07.06.190256>.

r-picb 1.2.0
Propagated dependencies: r-seqinr@4.2-36 r-seqinfo@1.0.0 r-s4vectors@0.48.0 r-rsamtools@2.26.0 r-openxlsx@4.2.8.1 r-iranges@2.44.0 r-genomicranges@1.62.0 r-genomicalignments@1.46.0 r-dplyr@1.1.4 r-data-table@1.17.8 r-biostrings@2.78.0
Channel: guix-bioc
Location: guix-bioc/packages/p.scm (guix-bioc packages p)
Home page: https://github.com/HaaseLab/PICB
Licenses: CC0
Build system: r
Synopsis: piRNA Cluster Builder
Description:

piRNAs (short for PIWI-interacting RNAs) and their PIWI protein partners play a key role in fertility and maintaining genome integrity by restricting mobile genetic elements (transposons) in germ cells. piRNAs originate from genomic regions known as piRNA clusters. The piRNA Cluster Builder (PICB) is a versatile toolkit designed to identify genomic regions with a high density of piRNAs. It constructs piRNA clusters through a stepwise integration of unique and multimapping piRNAs and offers wide-ranging parameter settings, supported by an optimization function that allows users to test different parameter combinations to tailor the analysis to their specific piRNA system. The output includes extensive metadata columns, enabling researchers to rank clusters and extract cluster characteristics.

r-cata 0.1.1.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://CRAN.R-project.org/package=cata
Licenses: GPL 2+
Build system: r
Synopsis: Analysis of Check-All-that-Apply (CATA) Data
Description:

Package contains functions for analyzing check-all-that-apply (CATA) data from consumer and sensory tests. Cochran's Q test, McNemar's test, and Penalty-Lift analysis are provided; for details, see Meyners, Castura & Carr (2013) <doi:10.1016/j.foodqual.2013.06.010>. Cluster analysis can be performed using b-cluster analysis, then evaluated using various measures; for details, see Castura, Meyners, Varela & Næs (2022) <doi:10.1016/j.foodqual.2022.104564>. Consumers can also be clustered on their product-related hedonic responses; see Castura, Meyners, Pohjanheimo, Varela & Næs (2023) <doi:10.1111/joss.12860>. Permutation tests based on the L1-norm methods are provided; for details, see Chaya, Castura & Greenacre (2025) <doi:10.1016/j.foodqual.2025.105639>.

r-itos 1.0.3
Propagated dependencies: r-xtable@1.8-4 r-rcbalance@1.8.8 r-mass@7.3-65 r-biasedurn@2.0.12
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=iTOS
Licenses: GPL 2
Build system: r
Synopsis: Methods and Examples from Introduction to the Theory of Observational Studies
Description:

Supplements for a book, "iTOS" = "Introduction to the Theory of Observational Studies." Data sets are aHDL from Rosenbaum (2023a) <doi:10.1111/biom.13558> and bingeM from Rosenbaum (2023b) <doi:10.1111/biom.13921>. The function makematch() uses two-criteria matching from Zhang et al. (2023) <doi:10.1080/01621459.2021.1981337> to create the matched data bingeM from binge'. The makematch() function also implements optimal matching (Rosenbaum (1989) <doi:10.2307/2290079>) and matching with fine or near-fine balance (Rosenbaum et al. (2007) <doi:10.1198/016214506000001059> and Yang et al (2012) <doi:10.1111/j.1541-0420.2011.01691.x>). The book makes use of two other R packages, weightedRank and tightenBlock'.

r-mlrv 0.1.2
Propagated dependencies: r-xtable@1.8-4 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-numderiv@2016.8-1.1 r-mathjaxr@1.8-0 r-magrittr@2.0.4 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mlrv
Licenses: Expat
Build system: r
Synopsis: Long-Run Variance Estimation in Time Series Regression
Description:

Plug-in and difference-based long-run covariance matrix estimation for time series regression. Two applications of hypothesis testing are also provided. The first one is for testing for structural stability in coefficient functions. The second one is aimed at detecting long memory in time series regression. Lujia Bai and Weichi Wu (2024)<doi:10.3150/23-BEJ1680> Zhou Zhou and Wei Biao Wu(2010)<doi:10.1111/j.1467-9868.2010.00743.x> Jianqing Fan and Wenyang Zhang<doi:10.1214/aos/1017939139> Lujia Bai and Weichi Wu(2024)<doi:10.1093/biomet/asae013> Dimitris N. Politis, Joseph P. Romano, Michael Wolf(1999)<doi:10.1007/978-1-4612-1554-7> Weichi Wu and Zhou Zhou(2018)<doi:10.1214/17-AOS1582>.

r-psme 1.0.0
Propagated dependencies: r-mgcv@1.9-4 r-matrix@1.7-4 r-lme4@1.1-37
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/ZheyuanLi/psme
Licenses: GPL 3
Build system: r
Synopsis: Penalized Splines Mixed-Effects Models
Description:

Fit penalized splines mixed-effects models (a special case of additive models) for large longitudinal datasets. The package includes a psme() function that (1) relies on package mgcv for constructing population and subject smooth functions as penalized splines, (2) transforms the constructed additive model to a linear mixed-effects model, (3) exploits package lme4 for model estimation and (4) backtransforms the estimated linear mixed-effects model to the additive model for interpretation and visualization. See Pedersen et al. (2019) <doi:10.7717/peerj.6876> and Bates et al. (2015) <doi:10.18637/jss.v067.i01> for an introduction. Unlike the gamm() function in mgcv', the psme() function is fast and memory-efficient, able to handle datasets with millions of observations.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
Total results: 30426