_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-npcp 0.2-6
Propagated dependencies: r-sandwich@3.1-1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=npcp
Licenses: GPL 3+ FSDG-compatible
Build system: r
Synopsis: Some Nonparametric CUSUM Tests for Change-Point Detection in Possibly Multivariate Observations
Description:

This package provides nonparametric CUSUM tests for detecting changes in possibly serially dependent univariate or low-dimensional multivariate observations. Retrospective tests sensitive to changes in the expectation, the variance, the covariance, the autocovariance, the distribution function, Spearman's rho, Kendall's tau, Gini's mean difference, and the copula are provided, as well as a test for detecting changes in the distribution of independent block maxima (with environmental studies in mind). The package also contains a test sensitive to changes in the autocopula and a combined test of stationarity sensitive to changes in the distribution function and the autocopula. The latest additions are an open-end sequential test based on the retrospective CUSUM statistic that can be used for monitoring changes in the mean of possibly serially dependent univariate observations, as well as closed-end and open-end sequential tests based on empirical distribution functions that can be used for monitoring changes in the contemporary distribution of possibly serially dependent univariate or low-dimensional multivariate observations.

r-ordr 0.2.0
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-scales@1.4.0 r-rlang@1.1.6 r-purrr@1.2.0 r-mass@7.3-65 r-magrittr@2.0.4 r-labeling@0.4.3 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-gggda@0.1.1 r-generics@0.1.4 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://github.com/corybrunson/ordr
Licenses: GPL 3
Build system: r
Synopsis: 'Tidyverse' Extension for Ordinations and Biplots
Description:

Ordination comprises several multivariate exploratory and explanatory techniques with theoretical foundations in geometric data analysis; see Podani (2000, ISBN:90-5782-067-6) for techniques and applications and Le Roux & Rouanet (2005) <doi:10.1007/1-4020-2236-0> for foundations. Greenacre (2010, ISBN:978-84-923846) shows how the most established of these, including principal components analysis, correspondence analysis, multidimensional scaling, factor analysis, and discriminant analysis, rely on eigen-decompositions or singular value decompositions of pre-processed numeric matrix data. These decompositions give rise to a set of shared coordinates along which the row and column elements can be measured. The overlay of their scatterplots on these axes, introduced by Gabriel (1971) <doi:10.1093/biomet/58.3.453>, is called a biplot. ordr provides inspection, extraction, manipulation, and visualization tools for several popular ordination classes supported by a set of recovery methods. It is inspired by and designed to integrate into Tidyverse workflows provided by Wickham et al (2019) <doi:10.21105/joss.01686>.

r-xxdi 1.2.4
Propagated dependencies: r-tidyr@1.3.1 r-matrix@1.7-4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-agop@0.2.4
Channel: guix-cran
Location: guix-cran/packages/x.scm (guix-cran packages x)
Home page: https://cran.r-project.org/package=xxdi
Licenses: GPL 3
Build system: r
Synopsis: Calculate Expertise Indices
Description:

Institutional performance assessment remains a key challenge to a multitude of stakeholders. Existing indicators such as h-type indicators, g-type indicators, and many others do not reflect expertise of institutions that defines their research portfolio. The package offers functionality to compute and visualise two novel indices: the x-index and the xd-index. The x-index evaluates an institution's scholarly expertise within a specific discipline or field, while the xd-index provides a broader assessment of overall scholarly expertise considering an institution's publication pattern and strengths across coarse thematic areas. These indices offer a nuanced understanding of institutional research capabilities, aiding stakeholders in research management and resource allocation decisions. Lathabai, H.H., Nandy, A., and Singh, V.K. (2021) <doi:10.1007/s11192-021-04188-3>. Nandy, A., Lathabai, H.H., and Singh, V.K. (2023) <doi:10.5281/zenodo.8305585>. This package provides the h, g, x, and xd indices for use with standard format of Web of Science (WoS) scrapped datasets.

r-mram 1.0.0
Propagated dependencies: r-rann@2.6.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MRAM
Licenses: GPL 2
Build system: r
Synopsis: Multivariate Regression Association Measure
Description:

Implementations of an estimator for the multivariate regression association measure (MRAM) proposed in Shih and Chen (2026) <doi:10.1016/j.csda.2025.108288> and its associated variable selection algorithm. The MRAM quantifies the predictability of a random vector Y from a random vector X given a random vector Z. It takes the maximum value 1 if and only if Y is almost surely a measurable function of X and Z, and the minimum value of 0 if Y is conditionally independent of X given Z. The MRAM generalizes the Kendall's tau copula correlation ratio proposed in Shih and Emura (2021) <doi:10.1016/j.jmva.2020.104708> by employing the spatial sign function. The estimator is based on the nearest neighbor method, and the associated variable selection algorithm is adapted from the feature ordering by conditional independence (FOCI) algorithm of Azadkia and Chatterjee (2021) <doi:10.1214/21-AOS2073>. For further details, see the paper Shih and Chen (2026) <doi:10.1016/j.csda.2025.108288>.

r-spas 2025.2.1
Propagated dependencies: r-tmb@1.9.18 r-reshape2@1.4.5 r-rcppeigen@0.3.4.0.2 r-plyr@1.8.9 r-numderiv@2016.8-1.1 r-msm@1.8.2 r-matrix@1.7-4 r-mass@7.3-65 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SPAS
Licenses: GPL 2+
Build system: r
Synopsis: Stratified-Petersen Analysis System
Description:

The Stratified-Petersen Analysis System (SPAS) is designed to estimate abundance in two-sample capture-recapture experiments where the capture and recaptures are stratified. This is a generalization of the simple Lincoln-Petersen estimator. Strata may be defined in time or in space or both, and the s strata in which marking takes place may differ from the t strata in which recoveries take place. When s=t, SPAS reduces to the method described by Darroch (1961) <doi:10.2307/2332748>. When s<t, SPAS implements the methods described in Plante, Rivest, and Tremblay (1988) <doi:10.2307/2533994>. Schwarz and Taylor (1998) <doi:10.1139/f97-238> describe the use of SPAS in estimating return of salmon stratified by time and geography. A related package, BTSPAS, deals with temporal stratification where a spline is used to model the distribution of the population over time as it passes the second capture location. This is the R-version of the (now obsolete) standalone Windows program of the same name.

r-sotu 1.0.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/statsmaths/sotu/
Licenses: GPL 2
Build system: r
Synopsis: United States Presidential State of the Union Addresses
Description:

The President of the United States is constitutionally obligated to provide a report known as the State of the Union'. The report summarizes the current challenges facing the country and the president's upcoming legislative agenda. While historically the State of the Union was often a written document, in recent decades it has always taken the form of an oral address to a joint session of the United States Congress. This package provides the raw text from every such address with the intention of being used for meaningful examples of text analysis in R. The corpus is well suited to the task as it is historically important, includes material intended to be read and material intended to be spoken, and it falls in the public domain. As the corpus spans over two centuries it is also a good test of how well various methods hold up to the idiosyncrasies of historical texts. Associated data about each address, such as the year, president, party, and format, are also included.

r-vita 1.0.0
Propagated dependencies: r-rcpp@1.1.0 r-randomforest@4.7-1.2
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://cran.r-project.org/package=vita
Licenses: GPL 2+
Build system: r
Synopsis: Variable Importance Testing Approaches
Description:

This package implements the novel testing approach by Janitza et al.(2015) <http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-25587-4> for the permutation variable importance measure in a random forest and the PIMP-algorithm by Altmann et al.(2010) <doi:10.1093/bioinformatics/btq134>. Janitza et al.(2015) <http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-25587-4> do not use the "standard" permutation variable importance but the cross-validated permutation variable importance for the novel test approach. The cross-validated permutation variable importance is not based on the out-of-bag observations but uses a similar strategy which is inspired by the cross-validation procedure. The novel test approach can be applied for classification trees as well as for regression trees. However, the use of the novel testing approach has not been tested for regression trees so far, so this routine is meant for the expert user only and its current state is rather experimental.

r-most 0.1.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MOST
Licenses: GPL 2+
Build system: r
Synopsis: Multiphase Optimization Strategy
Description:

This package provides functions similar to the SAS macros previously provided to accompany Collins, Dziak, and Li (2009) <DOI:10.1037/a0015826> and Dziak, Nahum-Shani, and Collins (2012) <DOI:10.1037/a0026972>, papers which outline practical benefits and challenges of factorial and fractional factorial experiments for scientists interested in developing biological and/or behavioral interventions, especially in the context of the multiphase optimization strategy (see Collins, Kugler & Gwadz 2016) <DOI:10.1007/s10461-015-1145-4>. The package currently contains three functions. First, RelativeCosts1() draws a graph of the relative cost of complete and reduced factorial designs versus other alternatives. Second, RandomAssignmentGenerator() returns a dataframe which contains a list of random numbers that can be used to conveniently assign participants to conditions in an experiment with many conditions. Third, FactorialPowerPlan() estimates the power, detectable effect size, or required sample size of a factorial or fractional factorial experiment, for main effects or interactions, given several possible choices of effect size metric, and allowing pretests and clustering.

r-emir 1.0.5
Propagated dependencies: r-tidyr@1.3.1 r-tictoc@1.2.1 r-tibble@3.3.0 r-testthat@3.3.0 r-rdpack@2.6.4 r-rcppprogress@0.4.2 r-rcpp@1.1.0 r-mathjaxr@1.8-0 r-ggplot2@4.0.1 r-gganimate@1.0.11 r-dplyr@1.1.4 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EmiR
Licenses: GPL 3
Build system: r
Synopsis: Evolutionary Minimizer for R
Description:

This package provides a C++ implementation of the following evolutionary algorithms: Bat Algorithm (Yang, 2010 <doi:10.1007/978-3-642-12538-6_6>), Cuckoo Search (Yang, 2009 <doi:10.1109/nabic.2009.5393690>), Genetic Algorithms (Holland, 1992, ISBN:978-0262581110), Gravitational Search Algorithm (Rashedi et al., 2009 <doi:10.1016/j.ins.2009.03.004>), Grey Wolf Optimization (Mirjalili et al., 2014 <doi:10.1016/j.advengsoft.2013.12.007>), Harmony Search (Geem et al., 2001 <doi:10.1177/003754970107600201>), Improved Harmony Search (Mahdavi et al., 2007 <doi:10.1016/j.amc.2006.11.033>), Moth-flame Optimization (Mirjalili, 2015 <doi:10.1016/j.knosys.2015.07.006>), Particle Swarm Optimization (Kennedy et al., 2001 ISBN:1558605959), Simulated Annealing (Kirkpatrick et al., 1983 <doi:10.1126/science.220.4598.671>), Whale Optimization Algorithm (Mirjalili and Lewis, 2016 <doi:10.1016/j.advengsoft.2016.01.008>). EmiR can be used not only for unconstrained optimization problems, but also in presence of inequality constrains, and variables restricted to be integers.

r-tmle 2.1.1
Propagated dependencies: r-superlearner@2.0-29 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://CRAN.R-project.org/package=tmle
Licenses: Modified BSD GPL 2
Build system: r
Synopsis: Targeted Maximum Likelihood Estimation
Description:

Targeted maximum likelihood estimation of point treatment effects (Targeted Maximum Likelihood Learning, The International Journal of Biostatistics, 2(1), 2006. This version automatically estimates the additive treatment effect among the treated (ATT) and among the controls (ATC). The tmle() function calculates the adjusted marginal difference in mean outcome associated with a binary point treatment, for continuous or binary outcomes. Relative risk and odds ratio estimates are also reported for binary outcomes. Missingness in the outcome is allowed, but not in treatment assignment or baseline covariate values. The population mean is calculated when there is missingness, and no variation in the treatment assignment. The tmleMSM() function estimates the parameters of a marginal structural model for a binary point treatment effect. Effect estimation stratified by a binary mediating variable is also available. An ID argument can be used to identify repeated measures. Default settings call SuperLearner to estimate the Q and g portions of the likelihood, unless values or a user-supplied regression function are passed in as arguments.

r-boin 2.7.2
Propagated dependencies: r-iso@0.0-21
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BOIN
Licenses: GPL 2
Build system: r
Synopsis: Bayesian Optimal INterval (BOIN) Design for Single-Agent and Drug- Combination Phase I Clinical Trials
Description:

The Bayesian optimal interval (BOIN) design is a novel phase I clinical trial design for finding the maximum tolerated dose (MTD). It can be used to design both single-agent and drug-combination trials. The BOIN design is motivated by the top priority and concern of clinicians when testing a new drug, which is to effectively treat patients and minimize the chance of exposing them to subtherapeutic or overly toxic doses. The prominent advantage of the BOIN design is that it achieves simplicity and superior performance at the same time. The BOIN design is algorithm-based and can be implemented in a simple way similar to the traditional 3+3 design. The BOIN design yields an average performance that is comparable to that of the continual reassessment method (CRM, one of the best model-based designs) in terms of selecting the MTD, but has a substantially lower risk of assigning patients to subtherapeutic or overly toxic doses. For tutorial, please check Yan et al. (2020) <doi:10.18637/jss.v094.i13>.

r-smmr 1.0.5
Propagated dependencies: r-seqinr@4.2-36 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-discreteweibull@1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://plmlab.math.cnrs.fr/lmrs/statistique/smmR
Licenses: GPL 3
Build system: r
Synopsis: Simulation, Estimation and Reliability of Semi-Markov Models
Description:

This package performs parametric and non-parametric estimation and simulation for multi-state discrete-time semi-Markov processes. For the parametric estimation, several discrete distributions are considered for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. The non-parametric estimation concerns the sojourn time distributions, where no assumptions are done on the shape of distributions. Moreover, the estimation can be done on the basis of one or several sample paths, with or without censoring at the beginning or/and at the end of the sample paths. Reliability indicators such as reliability, maintainability, availability, BMP-failure rate, RG-failure rate, mean time to failure and mean time to repair are available as well. The implemented methods are described in Barbu, V.S., Limnios, N. (2008) <doi:10.1007/978-0-387-73173-5>, Barbu, V.S., Limnios, N. (2008) <doi:10.1080/10485250701261913> and Trevezas, S., Limnios, N. (2011) <doi:10.1080/10485252.2011.555543>. Estimation and simulation of discrete-time k-th order Markov chains are also considered.

r-minb 0.1.0
Propagated dependencies: r-pscl@1.5.9 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=minb
Licenses: GPL 3
Build system: r
Synopsis: Multiple-Inflated Negative Binomial Model
Description:

Count data is prevalent and informative, with widespread application in many fields such as social psychology, personality, and public health. Classical statistical methods for the analysis of count outcomes are commonly variants of the log-linear model, including Poisson regression and Negative Binomial regression. However, a typical problem with count data modeling is inflation, in the sense that the counts are evidently accumulated on some integers. Such an inflation problem could distort the distribution of the observed counts, further bias estimation and increase error, making the classic methods infeasible. Traditional inflated value selection methods based on histogram inspection are easy to neglect true points and computationally expensive in addition. Therefore, we propose a multiple-inflated negative binomial model to handle count data modeling with multiple inflated values, achieving data-driven inflated value selection. The proposed approach provides simultaneous identification of important regression predictors on the target count response as well. More details about the proposed method are described in Li, Y., Wu, M., Wu, M., & Ma, S. (2023) <arXiv:2309.15585>.

r-bakr 1.0.1
Propagated dependencies: r-tidyr@1.3.1 r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-purrr@1.2.0 r-magrittr@2.0.4 r-hmisc@5.2-4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-data-table@1.17.8 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://simonlabcode.github.io/bakR/
Licenses: Expat
Build system: r
Synopsis: Analyze and Compare Nucleotide Recoding RNA Sequencing Datasets
Description:

Several implementations of a novel Bayesian hierarchical statistical model of nucleotide recoding RNA-seq experiments (NR-seq; TimeLapse-seq, SLAM-seq, TUC-seq, etc.) for analyzing and comparing NR-seq datasets (see Vock and Simon (2023) <doi:10.1261/rna.079451.122>). NR-seq is a powerful extension of RNA-seq that provides information about the kinetics of RNA metabolism (e.g., RNA degradation rate constants), which is notably lacking in standard RNA-seq data. The statistical model makes maximal use of these high-throughput datasets by sharing information across transcripts to significantly improve uncertainty quantification and increase statistical power. bakR includes a maximally efficient implementation of this model for conservative initial investigations of datasets. bakR also provides more highly powered implementations using the probabilistic programming language Stan to sample from the full posterior distribution. bakR performs multiple-test adjusted statistical inference with the output of these model implementations to help biologists separate signal from background. Methods to automatically visualize key results and detect batch effects are also provided.

r-dfms 0.3.2
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-collapse@2.1.5
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://sebkrantz.github.io/dfms/
Licenses: GPL 3
Build system: r
Synopsis: Dynamic Factor Models
Description:

Efficient estimation of Dynamic Factor Models using the Expectation Maximization (EM) algorithm or Two-Step (2S) estimation, supporting datasets with missing data. Factors are assumed to follow a stationary VAR process of order p. The estimation options follow advances in the econometric literature: either running the Kalman Filter and Smoother once with initial values from PCA - 2S estimation as in Doz, Giannone and Reichlin (2011) <doi:10.1016/j.jeconom.2011.02.012> - or via iterated Kalman Filtering and Smoothing until EM convergence - following Doz, Giannone and Reichlin (2012) <doi:10.1162/REST_a_00225> - or using the adapted EM algorithm of Banbura and Modugno (2014) <doi:10.1002/jae.2306>, allowing arbitrary patterns of missing data. The implementation makes heavy use of the Armadillo C++ library and the collapse package, providing for particularly speedy estimation. A comprehensive set of methods supports interpretation and visualization of the model as well as forecasting. Information criteria to choose the number of factors are also provided - following Bai and Ng (2002) <doi:10.1111/1468-0262.00273>.

r-mpcr 1.1.4
Dependencies: git@2.52.0 cmake@4.1.3
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/stsds/MPCR
Licenses: GPL 3+
Build system: r
Synopsis: Multi- And Mixed-Precision Computations
Description:

Designed for multi- and mixed-precision computations, accommodating 64-bit and 32-bit data structures. This flexibility enables fast execution across various applications. The package enhances performance by optimizing operations in both precision levels, which is achieved by integrating with high-speed BLAS and LAPACK libraries like MKL and OpenBLAS'. Including a 32-bit option caters to applications where high precision is unnecessary, accelerating computational processes whenever feasible. The package also provides support for tile-based algorithms in three linear algebra operations: CHOL(), TRSM(), and GEMM(). The tile-based algorithm splits the matrix into smaller tiles, facilitating parallelization through a predefined Directed Acyclic Graph (DAG) for each operation. Enabling OpenMP enhances the efficiency of these operations, leveraging multi-core parallelism. In this case, MPCR facilitates mixed-precision execution by permitting varying precision levels for different tiles. This approach is advantageous in numerous applications, as it maintains the accuracy of the application while accelerating execution in scenarios where single-precision alone does not significantly affect the accuracy of the application.

r-tram 1.3-2
Propagated dependencies: r-variables@1.1-2 r-survival@3.8-3 r-sandwich@3.1-1 r-mvtnorm@1.3-3 r-multcomp@1.4-29 r-mlt@1.7-3 r-matrix@1.7-4 r-formula@1.2-5 r-basefun@1.2-5
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: http://ctm.R-forge.R-project.org
Licenses: GPL 2
Build system: r
Synopsis: Transformation Models
Description:

Formula-based user-interfaces to specific transformation models implemented in package mlt (<DOI:10.32614/CRAN.package.mlt>, <DOI:10.32614/CRAN.package.mlt.docreg>). Available models include Cox models, some parametric survival models (Weibull, etc.), models for ordered categorical variables, normal and non-normal (Box-Cox type) linear models, and continuous outcome logistic regression (Lohse et al., 2017, <DOI:10.12688/f1000research.12934.1>). The underlying theory is described in Hothorn et al. (2018) <DOI:10.1111/sjos.12291>. An extension to transformation models for clustered data is provided (Barbanti and Hothorn, 2022, <DOI:10.1093/biostatistics/kxac048>) and a tutorial explains applications in survival analysis (Siegfried et al., 2025, <DOI:10.48550/arXiv.2402.06428>). Multivariate conditional transformation models (Klein et al, 2022, <DOI:10.1111/sjos.12501>) and shift-scale transformation models (Siegfried et al, 2023, <DOI:10.1080/00031305.2023.2203177>) can be fitted as well. The package contains an implementation of a doubly robust score test, described in Kook et al. (2024, <DOI:10.1080/01621459.2024.2395588>).

r-keng 2025.10.8
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://github.com/qyaozh/Keng
Licenses: FSDG-compatible
Build system: r
Synopsis: Knock Errors Off Nice Guesses
Description:

Miscellaneous functions and data used in psychological research and teaching. Keng currently has a built-in dataset depress, and could (1) scale a vector; (2) compute the cut-off values of Pearson's r with known sample size; (3) test the significance and compute the post-hoc power for Pearson's r with known sample size; (4) conduct a priori power analysis and plan the sample size for Pearson's r; (5) compare lm()'s fitted outputs using R-squared, f_squared, post-hoc power, and PRE (Proportional Reduction in Error, also called partial R-squared or partial Eta-squared); (6) calculate PRE from partial correlation, Cohen's f, or f_squared; (7) conduct a priori power analysis and plan the sample size for one or a set of predictors in regression analysis; (8) conduct post-hoc power analysis for one or a set of predictors in regression analysis with known sample size; (9) randomly pick numbers for Chinese Super Lotto and Double Color Balls; (10) assess course objective achievement in Outcome-Based Education.

r-lutz 0.3.2
Propagated dependencies: r-rcpp@1.1.0 r-lubridate@1.9.4
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://andyteucher.ca/lutz/
Licenses: Expat
Build system: r
Synopsis: Look Up Time Zones of Point Coordinates
Description:

Input latitude and longitude values or an sf/sfc POINT object and get back the time zone in which they exist. Two methods are implemented. One is very fast and uses Rcpp in conjunction with data from the Javascript library (<https://github.com/darkskyapp/tz-lookup-oss/>). This method also works outside of countries borders and in international waters, however speed comes at the cost of accuracy - near time zone borders away from populated centres there is a chance that it will return the incorrect time zone. The other method is slower but more accurate - it uses the sf package to intersect points with a detailed map of time zones from here: <https://github.com/evansiroky/timezone-boundary-builder/>. The package also contains several utility functions for helping to understand and visualize time zones, such as listing of world time zones, including information about daylight savings times and their offsets from UTC. You can also plot a time zone to visualize the UTC offset over a year and when daylight savings times are in effect.

r-cnps 1.0.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CNPS
Licenses: GPL 2
Build system: r
Synopsis: Nonparametric Statistics
Description:

We unify various nonparametric hypothesis testing problems in a framework of permutation testing, enabling hypothesis testing on multi-sample, multidimensional data and contingency tables. Most of the functions available in the R environment to implement permutation tests are single functions constructed for specific test problems; to facilitate the use of the package, the package encapsulates similar tests in a categorized manner, greatly improving ease of use. We will all provide functions for self-selected permutation scoring methods and self-selected p-value calculation methods (asymptotic, exact, and sampling). For two-sample tests, we will provide mean tests and estimate drift sizes; we will provide tests on variance; we will provide paired-sample tests; we will provide correlation coefficient tests under three measures. For multi-sample problems, we will provide both ordinary and ordered alternative test problems. For multidimensional data, we will implement multivariate means (including ordered alternatives) and multivariate pairwise tests based on four statistics; the components with significant differences are also calculated. For contingency tables, we will perform permutation chi-square test or ordered alternative.

r-epcr 0.11.0
Propagated dependencies: r-timeroc@0.4 r-survival@3.8-3 r-pracma@2.4.6 r-impute@1.84.0 r-hamlet@0.9.8 r-glmnet@4.1-10 r-bolstad2@1.0-29
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=ePCR
Licenses: GPL 2+
Build system: r
Synopsis: Ensemble Penalized Cox Regression for Survival Prediction
Description:

The top-performing ensemble-based Penalized Cox Regression (ePCR) framework developed during the DREAM 9.5 mCRPC Prostate Cancer Challenge <https://www.synapse.org/ProstateCancerChallenge> presented in Guinney J, Wang T, Laajala TD, et al. (2017) <doi:10.1016/S1470-2045(16)30560-5> is provided here-in, together with the corresponding follow-up work. While initially aimed at modeling the most advanced stage of prostate cancer, metastatic Castration-Resistant Prostate Cancer (mCRPC), the modeling framework has subsequently been extended to cover also the non-metastatic form of advanced prostate cancer (CRPC). Readily fitted ensemble-based model S4-objects are provided, and a simulated example dataset based on a real-life cohort is provided from the Turku University Hospital, to illustrate the use of the package. Functionality of the ePCR methodology relies on constructing ensembles of strata in patient cohorts and averaging over them, with each ensemble member consisting of a highly optimized penalized/regularized Cox regression model. Various cross-validation and other modeling schema are provided for constructing novel model objects.

r-isni 1.3
Propagated dependencies: r-nnet@7.3-20 r-nlme@3.1-168 r-mvtnorm@1.3-3 r-matrixcalc@1.0-6 r-lme4@1.1-37 r-formula@1.2-5
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=isni
Licenses: GPL 2
Build system: r
Synopsis: Index of Local Sensitivity to Nonignorability
Description:

The current version provides functions to compute, print and summarize the Index of Sensitivity to Nonignorability (ISNI) in the generalized linear model for independent data, and in the marginal multivariate Gaussian model and the mixed-effects models for continuous and binary longitudinal/clustered data. It allows for arbitrary patterns of missingness in the regression outcomes caused by dropout and/or intermittent missingness. One can compute the sensitivity index without estimating any nonignorable models or positing specific magnitude of nonignorability. Thus ISNI provides a simple quantitative assessment of how robust the standard estimates assuming missing at random is with respect to the assumption of ignorability. For a tutorial, download at <https://huixie.people.uic.edu/Research/ISNI_R_tutorial.pdf>. For more details, see Troxel Ma and Heitjan (2004) and Xie and Heitjan (2004) <doi:10.1191/1740774504cn005oa> and Ma Troxel and Heitjan (2005) <doi:10.1002/sim.2107> and Xie (2008) <doi:10.1002/sim.3117> and Xie (2012) <doi:10.1016/j.csda.2010.11.021> and Xie and Qian (2012) <doi:10.1002/jae.1157>.

r-mote 1.2.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/doomlab/MOTE
Licenses: LGPL 3
Build system: r
Synopsis: Effect Size and Confidence Interval Calculator
Description:

Measure of the Effect ('MOTE') is an effect size calculator, including a wide variety of effect sizes in the mean differences family (all versions of d) and the variance overlap family (eta, omega, epsilon, r). MOTE provides non-central confidence intervals for each effect size, relevant test statistics, and output for reporting in APA Style (American Psychological Association, 2010, <ISBN:1433805618>) with LaTeX'. In research, an over-reliance on p-values may conceal the fact that a study is under-powered (Halsey, Curran-Everett, Vowler, & Drummond, 2015 <doi:10.1038/nmeth.3288>). A test may be statistically significant, yet practically inconsequential (Fritz, Scherndl, & Kühberger, 2012 <doi:10.1177/0959354312436870>). Although the American Psychological Association has long advocated for the inclusion of effect sizes (Wilkinson & American Psychological Association Task Force on Statistical Inference, 1999 <doi:10.1037/0003-066X.54.8.594>), the vast majority of peer-reviewed, published academic studies stop short of reporting effect sizes and confidence intervals (Cumming, 2013, <doi:10.1177/0956797613504966>). MOTE simplifies the use and interpretation of effect sizes and confidence intervals.

r-tbea 1.7.0
Propagated dependencies: r-rfit@0.27.0 r-coda@0.19-4.1 r-boot@1.3-32 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/gaballench/tbea
Licenses: GPL 3
Build system: r
Synopsis: Pre- And Post-Processing in Bayesian Evolutionary Analyses
Description:

This package provides functions are provided for prior specification in divergence time estimation using fossils as well as other kinds of data. It provides tools for interacting with the input and output of Bayesian platforms in evolutionary biology such as BEAST2', MrBayes', RevBayes', or MCMCTree'. It Implements a simple measure similarity between probability density functions for comparing prior and posterior Bayesian densities, as well as code for calculating the combination of distributions using conflation of Hill (2008). Functions for estimating the origination time in collections of distributions using the x-intercept (e.g., Draper and Smith, 1998) and stratigraphic intervals (Marshall 2010) are also available. Hill, T. 2008. "Conflations of probability distributions". Transactions of the American Mathematical Society, 363:3351-3372. <doi:10.48550/arXiv.0808.1808>, Draper, N. R. and Smith, H. 1998. "Applied Regression Analysis". 1--706. Wiley Interscience, New York. <DOI:10.1002/9781118625590>, Marshall, C. R. 2010. "Using confidence intervals to quantify the uncertainty in the end-points of stratigraphic ranges". Quantitative Methods in Paleobiology, 291--316. <DOI:10.1017/S1089332600001911>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265
Total results: 30358