Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of evaluation metrics, including loss, score and utility functions, that measure regression, classification and ranking performance.
This package extends the out of memory vectors of ff with statistical functions and other utilities to ease their usage.
The first day of any MMWR week is Sunday. MMWR week numbering is sequential beginning with 1 and incrementing with each week to a maximum of 52 or 53. MMWR week #1 of an MMWR year is the first week of the year that has at least four days in the calendar year. This package provides functionality to convert dates to MMWR day, week, and year and the reverse.
Given a protein multiple sequence alignment, it is a daunting task to assess the effects of substitutions along sequence length. The aaSEA package is intended to help researchers to rapidly analyze property changes caused by single, multiple and correlated amino acid substitutions in proteins.
NbClust provides 30 indexes for determining the optimal number of clusters in a data set and offers the best clustering scheme from different results to the user.
This package provides meta-analysis methods that correct for publication bias and outcome reporting bias. Four methods and a visual tool are currently included in the package.
The p-uniform method as described in van Assen, van Aert, and Wicherts (2015) doi:10.1037/met0000025 can be used for estimating the average effect size, testing the null hypothesis of no effect, and testing for publication bias using only the statistically significant effect sizes of primary studies.
The p-uniform* method as described in van Aert and van Assen (2019) doi:10.31222/osf.io/zqjr9. This method is an extension of the p-uniform method that allows for estimation of the average effect size and the between-study variance in a meta-analysis, and uses both the statistically significant and nonsignificant effect sizes.
The hybrid method as described in van Aert and van Assen (2017) doi:10.3758/s13428-017-0967-6. The hybrid method is a meta-analysis method for combining an original study and replication and while taking into account statistical significance of the original study. The p-uniform and hybrid method are based on the statistical theory that the distribution of p-values is uniform conditional on the population effect size.
The fourth method in the package is the Snapshot Bayesian Hybrid Meta-Analysis Method as described in van Aert and van Assen (2018) doi:10.1371/journal.pone.0175302. This method computes posterior probabilities for four true effect sizes (no, small, medium, and large) based on an original study and replication while taking into account publication bias in the original study. The method can also be used for computing the required sample size of the replication akin to power analysis in null hypothesis significance testing.
The meta-plot is a visual tool for meta-analysis that provides information on the primary studies in the meta-analysis, the results of the meta-analysis, and characteristics of the research on the effect under study (van Assen and others, 2020).
Helper functions to apply the Correcting for Outcome Reporting Bias (CORB) method to correct for outcome reporting bias in a meta-analysis (van Aert & Wicherts, 2020).
This package provides a system for reporting messages, which offers certain useful features over the standard R system, such as the incorporation of output consolidation, message filtering, assertions, expression substitution, automatic generation of stack traces for debugging, and conditional reporting based on the current "output level".
Fit Conway-Maxwell Poisson (COM-Poisson or CMP) regression models to count data (Sellers & Shmueli, 2010) <doi:10.1214/09-AOAS306>. The package provides functions for model estimation, dispersion testing, and diagnostics. Zero-inflated CMP regression (Sellers & Raim, 2016) <doi:10.1016/j.csda.2016.01.007> is also supported.
This package provides an R module for display of maps. Projection code and larger maps are in separate packages (mapproj and mapdata).
For distributions whose probability density functions are log-concave, the adaptive rejection sampling algorithm can be used to build envelope functions for sampling. For others, the modified adaptive rejection sampling algorithm, the concave-convex adaptive rejection sampling algorithm, and the adaptive slice sampling algorithm can be used. This R package mainly includes these four functions: rARS(), rMARS(), rCCARS(), and rASS(). These functions can realize sampling based on the algorithms above.
This package provides a graphics device for R that is accessible via network protocols. This package was created to make it easier to embed live R graphics in integrated development environments and other applications. The included HTML/JavaScript client (plot viewer) aims to provide a better overall user experience when dealing with R graphics. The device asynchronously serves graphics via HTTP and WebSockets'.
This package extends several functions to the complex domain, including the matrix exponential and logarithm, and the determinant.
The fit.models function and its associated methods (coefficients, print, summary, plot, etc.) were originally provided in the robust package to compare robustly and classically fitted model objects. The aim of the fit.models package is to separate this fitted model object comparison functionality from the robust package and to extend it to support fitting methods (e.g., classical, robust, Bayesian, regularized, etc.) more generally.
This package lets you build regression models using the techniques in Friedman's papers "Fast MARS" and "Multivariate Adaptive Regression Splines" <doi:10.1214/aos/1176347963>. The term "MARS" is trademarked and thus not used in the name of the package.
This package provides routines for the statistical analysis of landmark shapes, including Procrustes analysis, graphical displays, principal components analysis, permutation and bootstrap tests, thin-plate spline transformation grids and comparing covariance matrices. See Dryden, I.L. and Mardia, K.V. (2016). Statistical shape analysis, with Applications in R (2nd Edition), John Wiley and Sons.
Users may want to align plots with associated information that requires axes to be exactly matched in subplots, e.g. hierarchical clustering with a heatmap. This package provides utilities to align associated subplots to a main plot at different sides (left, right, top and bottom) with axes exactly matched.
This package provides a model agnostic tool for decomposition of predictions from black boxes. It supports additive attributions and attributions with interactions. The Break Down Table shows contributions of every variable to a final prediction. The Break Down Plot presents variable contributions in a concise graphical way. This package works for classification and regression models.
This package provides R bindings to the uchardet encoding detector library from Mozilla. It takes a sequence of bytes in an unknown character encoding without any additional information, and attempts to get the encoding of the text. All return names of the encodings are iconv-compatible.
This package provides functions for robust principal component analysis (PCA) by projection pursuit.
This package allows you to install specified versions of R packages hosted on CRAN and provides functions to list available versions and the versions of currently installed packages.
This package provides a multi-modal simulation engine for studying dynamic cellular processes at single-cell resolution.
This package provides an R Shiny application to create visual abstracts for original research. A variety of user defined options and formatting are included.
This package provides classes and methods for spatial data; the classes document where the spatial location information resides, for 2D or 3D data. Utility functions are provided, e.g. for plotting data as maps, spatial selection, as well as methods for retrieving coordinates, for subsetting, print, summary, etc.
This package implements the Python leidenalg module to be called in R. It enables clustering using the Leiden algorithm for partitioning a graph into communities. See also Traag et al (2018) "From Louvain to Leiden: guaranteeing well-connected communities." <arXiv:1810.08473>.