Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides interfaces to audio devices (mainly sample-based) from R to allow recording and playback of audio.
This package is an implementation of about 6 major classes of statistical regression models. Currently only fixed-effects models are implemented, i.e., no random-effects models. Many (150+) models and distributions are estimated by maximum likelihood estimation (MLE) or penalized MLE, using Fisher scoring. VGLMs can be loosely thought of as multivariate generalised linear models.
Logging functions in RcppSpdlog provide access to the logging functionality from the spdlog C++ library. This package offers shorter convenience wrappers for the R functions which match the C++ functions, namely via, say, spdl::debug() at the debug level. The actual formatting is done by the fmt::format() function from the fmtlib library (that is also std::format() in C++20 or later).
The ps package implements an API to list, query, and manipulate system processes. Most of its code is based on the psutil Python package.
Sankey plots are a type of diagram that is convenient to illustrate how flow of information, resources etc. separates and joins, much like observing how rivers split and merge. For example, they can be used to compare different clusterings. This package provides an implementation of Sankey plots for R.
This is a collection of econometric functions for performance and risk analysis. This package aims to aid practitioners and researchers in utilizing the latest research in analysis of non-normal return streams. In general, it is most tested on return (rather than price) data on a regular scale, but most functions will work with irregular return data as well, and increasing numbers of functions will work with P&L or price data where possible.
This package provides a number of user-level functions to work with grid graphics, notably to arrange multiple grid-based plots on a page, and draw tables.
This package provides an exact Goodness-of-Fit test for multinomial data with fixed probabilities. It can be used to determine whether a set of counts fits a given expected ratio. To see whether a set of observed counts fits an expectation, one can examine all possible outcomes with xmulti() or a random sample of them with xmonte() and find the probability of an observation deviating from the expectation by at least as much as the observed. As a measure of deviation from the expected, one can use the log-likelihood ratio, the multinomial probability, or the classic chi-square statistic. A histogram of the test statistic can also be plotted and compared with the asymptotic curve.
This package provides functions for numerical analysis and linear algebra, numerical optimization, differential equations, plus some special functions. It uses Matlab function names where appropriate to simplify porting.
This is a package for the analysis of discrete response data using unidimensional and multidimensional item analysis models under the Item Response Theory paradigm (Chalmers (2012) <doi:10.18637/jss.v048.i06>). Exploratory and confirmatory item factor analysis models are estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier models are available for modeling item testlets using dimension reduction EM algorithms, while multiple group analyses and mixed effects designs are included for detecting differential item, bundle, and test functioning, and for modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, mixture IRT models, and zero-inflated response models are supported.
This package defines sparse three-dimensional arrays and supports standard operations on them. The package also includes utility functions for matrix calculations that are common in statistics, such as quadratic forms.
This package implements methods that are useful in designing research studies and analyzing data, with particular emphasis on methods that are developed for or used within the behavioral, educational, and social sciences (broadly defined). That being said, many of the methods implemented within MBESS are applicable to a wide variety of disciplines. MBESS has a suite of functions for a variety of related topics, such as effect sizes, confidence intervals for effect sizes (including standardized effect sizes and noncentral effect sizes), sample size planning (from the accuracy in parameter estimation (AIPE), power analytic, equivalence, and minimum-risk point estimation perspectives), mediation analysis, various properties of distributions, and a variety of utility functions.
In order to smoothly animate the transformation of polygons and paths, many aspects needs to be taken into account, such as differing number of control points, changing center of rotation, etc. The transformr package provides an extensive framework for manipulating the shapes of polygons and paths and can be seen as the spatial brother to the tweenr package.
Apache Arrow is a cross-language development platform for in-memory data. It specifies a standardized language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware. This package provides an R interface to the Arrow C++ library.
This package provides code analysis tools for R to check R code for possible problems.
This package provides various functions for classification, including k-nearest neighbour, Learning Vector Quantization and Self-Organizing Maps.
Finding an optimal Bayesian experimental design involves maximizing an objective function given by the expectation of some appropriately chosen utility function with respect to the joint distribution of unknown quantities (including responses). This objective function is usually not available in closed form and the design space can be continuous and of high dimensionality. This package uses Approximate Coordinate Exchange (ACE) to maximise an approximation to the expectation of the utility function.
This package provides functions for testing affine hypotheses on the regression coefficient vector in regression models with autocorrelated errors.
This package implements reinforcement learning environments and algorithms as described in Sutton & Barto (1998). The Q-Learning algorithm can be used with function approximation, eligibility traces (Singh & Sutton, 1996) and experience replay (Mnih et al., 2013).
This package provides procedures to work with block diagonal symmetric matrices, a special case of sparse matrices.
Allow numbers to be presented in an English language version, one, two, three, ... Ordinals are also available, first, second, third, ... and indefinite article choice, "a" or "an".
Estimate generalized additive mixed models via a version of function gamm from the mgcv package, using the lme4 packagefor estimation.
This package provides vectorized distribution objects with tools for manipulating, visualizing, and using probability distributions. It was designed to allow model prediction outputs to return distributions rather than their parameters, allowing users to directly interact with predictive distributions in a data-oriented workflow. In addition to providing generic replacements for p/d/q/r functions, other useful statistics can be computed including means, variances, intervals, and highest density regions.
Extract metadata from NetCDF data sources; these can be files, file handles or servers. This package leverages and extends the lower level functions of the RNetCDF package providing a consistent set of functions that all return data frames.