Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a port of the type guesser from the readr package, the so-called readr first edition parsing engine, now superseded by vroom.
iheatmapr is an R package for building complex, interactive heatmaps using modular building blocks. "Complex" heatmaps are heatmaps in which subplots along the rows or columns of the main heatmap add more information about each row or column. For example, a one column additional heatmap may indicate what group a particular row or column belongs to. Complex heatmaps may also include multiple side by side heatmaps which show different types of data for the same conditions. Interactivity can improve complex heatmaps by providing tooltips with information about each cell and enabling zooming into interesting features. iheatmapr uses the plotly library for interactivity.
This package provides an implementation of an algorithm for general-purpose unconstrained non-linear optimization. The algorithm is of quasi-Newton type with BFGS updating of the inverse Hessian and soft line search with a trust region type monitoring of the input to the line search algorithm. The interface of ucminf is designed for easy interchange with the package optim.
This package provides a Cairo graphics device that can be use to create high-quality vector (PDF, PostScript and SVG) and bitmap output (PNG, JPEG, TIFF), and high-quality rendering in displays (X11 and Win32). Since it uses the same back-end for all output, copying across formats is WYSIWYG. Files are created without the dependence on X11 or other external programs. This device supports alpha channel (semi-transparent drawing) and resulting images can contain transparent and semi-transparent regions. It is ideal for use in server environments (file output) and as a replacement for other devices that don't have Cairo's capabilities such as alpha support or anti-aliasing. Backends are modular such that any subset of backends is supported.
This package provides functions and data sets for actuarial science: modeling of loss distributions; risk theory and ruin theory; simulation of compound models, discrete mixtures and compound hierarchical models; credibility theory. It boasts support for many additional probability distributions to model insurance loss amounts and loss frequency: 19 continuous heavy tailed distributions; the Poisson-inverse Gaussian discrete distribution; zero-truncated and zero-modified extensions of the standard discrete distributions. It also supports phase-type distributions commonly used to compute ruin probabilities.
This package creates square pie charts also known as waffle charts. These can be used to communicate parts of a whole for categorical quantities. To emulate the percentage view of a pie chart, a 10x10 grid should be used. In this way each square is representing 1% of the total. Waffle provides tools to create charts as well as stitch them together. Isotype pictograms can be made by using glyphs.
The Ziggurat pseudo-random number generator (or PRNG) offers a lightweight and very fast PRNG for the normal, exponential, and uniform distributions. It is provided here in a small zero-dependency package. It can be used from R as well as from C/C++ code in other packages as is demonstrated by four included sample packages using four distinct methods to use the PRNG presented here in client package.
The package provides estimators of the mode of univariate unimodal (and sometimes multimodal) data and values of the modes of usual probability distributions.
Implementation of the web-based Practical Meta-Analysis Effect Size Calculator from David B. Wilson in R. Based on the input, the effect size can be returned as standardized mean difference, Cohen's f, Hedges' g, Pearson's r or Fisher's transformation z, odds ratio or log odds, or eta squared effect size.
This package contains supporting data sets that are used in other packages maintained by Torsten Hothorn.
This package provides interpretability methods to analyze the behavior and predictions of any machine learning model. Implemented methods are:
Feature importance described by Fisher et al. (2018),
accumulated local effects plots described by Apley (2018),
partial dependence plots described by Friedman (2001),
individual conditional expectation ('ice') plots described by Goldstein et al. (2013) https://doi.org/10.1080/10618600.2014.907095,
local models (variant of 'lime') described by Ribeiro et. al (2016),
the Shapley Value described by Strumbelj et. al (2014) https://doi.org/10.1007/s10115-013-0679-x,
feature interactions described by Friedman et. al https://doi.org/10.1214/07-AOAS148 and tree surrogate models.
This package provides Wiener process distribution functions, namely the Wiener first passage time density, CDF, quantile and random functions. It additionally supplies a modelling function (wdm) and further methods for the resulting object.
The encoding of color can be handled in many different ways, using different color spaces. As different color spaces have different uses, efficient conversion between these representations are important. This package provides a set of functions that gives access to very fast color space conversion and comparisons implemented in C++, and offers 100-fold speed improvements over the convertColor function in the grDevices package.
Intense parallel workloads can be difficult to monitor. Packages crew.cluster, clustermq, and future.batchtools distribute hundreds of worker processes over multiple computers. If a worker process exhausts its available memory, it may terminate silently, leaving the underlying problem difficult to detect or troubleshoot. Using the autometric package, a worker can proactively monitor itself in a detached background thread. The worker process itself runs normally, and the thread writes to a log every few seconds. If the worker terminates unexpectedly, autometric can read and visualize the log file to reveal potential resource-related reasons for the crash. The autometric package borrows heavily from the methods of packages ps and psutil.
This package contains a list of functional time series, sliced functional time series, and functional data sets. Functional time series is a special type of functional data observed over time. Sliced functional time series is a special type of functional time series with a time variable observed over time.
This package provides a set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a log or a logit transformation, respectively.
Building modeling packages is hard. A large amount of effort generally goes into providing an implementation for a new method that is efficient, fast, and correct, but often less emphasis is put on the user interface. A good interface requires specialized knowledge about S3 methods and formulas, which the average package developer might not have. The goal of hardhat is to reduce the burden around building new modeling packages by providing functionality for preprocessing, predicting, and validating input.
This package contains a function that imports data from a CSV file, or uses manually entered data from the format (x, y, weight) and plots the appropriate ACC vs LOI graph and LMA graph. The main function is plotLMA (source file, header) that takes a data set and plots the appropriate LMA and ACC graphs. If no source file (a string) was passed, a manual data entry window is opened. The header parameter indicates by TRUE/FALSE (false by default) if the source CSV file has a header row or not. The dataset should contain only one independent variable (x) and one dependent variable (y) and can contain a weight for each observation.
colorout is an R package that colorizes R output when running in terminal emulator.
R STDOUT is parsed and numbers, negative numbers, dates in the standard format, strings, and R constants are identified and wrapped by special ANSI scape codes that are interpreted by terminal emulators as commands to colorize the output. R STDERR is also parsed to identify the expressions warning and error and their translations to many languages. If these expressions are found, the output is colorized accordingly; otherwise, it is colorized as STDERROR (blue, by default).
You can customize the colors according to your taste, guided by the color table made by the command show256Colors(). You can also set the colors to any arbitrary string. In this case, it is up to you to set valid values.
This package provides several methods for performing permutation tests. It has three main functions, to perform linear permutation tests. These tests are tests where the test statistic is the sum of the product of a covariate (usually group indicator) and the scores.
Fit Bayesian generalized (non-)linear multivariate multilevel models using Stan for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include non-linear and smooth terms, auto-correlation structures, censored data, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. Model fit can easily be assessed and compared with posterior predictive checks and leave-one-out cross-validation.
This package models with sparse and dense matrix matrices, using modular prediction and response module classes.
This package provides a set of convenient functions for calculating sun-related information, including the sun's position (elevation and azimuth), and the times of sunrise, sunset, solar noon, and twilight for any given geographical location on Earth. These calculations are based on equations provided by the National Oceanic & Atmospheric Administration (NOAA) as described in "Astronomical Algorithms" by Jean Meeus (1991). A resource for researchers and professionals working in fields such as climatology, biology, and renewable energy.
This package provides functions relating to time series analysis and computational finance.