This package was derived from Rsymphony. The package provides an R interface to SYMPHONY, a linear programming solver written in C++. The main difference between this package and Rsymphony is that it includes the solver source code, while Rsymphony expects to find header and library files on the users' system. Thus the intention of lpsymphony is to provide an easy to install interface to SYMPHONY.
The package detects extended diffuse and compact blemishes on microarray chips. Harshlight marks the areas in a collection of chips (affybatch objects). A corrected AffyBatch object will result. The package replaces the defected areas with N/As or the median of the values of the same probe. The new version handles the substitute value as a whole matrix to solve the memory problem.
This package performs Bayesian calibration of computer models as per Kennedy and O'Hagan 2001. The package includes routines to find the hyperparameters and parameters; see the help page for stage1() for a worked example using the toy dataset. A tutorial is provided in the calex.Rnw vignette; and a suite of especially simple one dimensional examples appears in inst/doc/one.dim/.
This package provides a forest plot that allows for multiple confidence intervals per row, custom fonts for each text element, custom confidence intervals, text mixed with expressions, and more. The aim is to extend the use of forest plots beyond meta-analyses. This is a more general version of the original rmeta package's forestplot() function and relies heavily on the grid package.
This package provides a streamlined workflow for the quanTIseq method, developed to perform the quantification of the Tumor Immune contexture from RNA-seq data. The quantification is performed against the TIL10 signature (dissecting the contributions of ten immune cell types), carefully crafted from a collection of human RNA-seq samples. The TIL10 signature has been extensively validated using simulated, flow cytometry, and immunohistochemistry data.
Modular package for generation of sets of ranges representing the null hypothesis. These can take the form of bootstrap samples of ranges (using the block bootstrap framework of Bickel et al 2010), or sets of control ranges that are matched across one or more covariates. nullranges is designed to be inter-operable with other packages for analysis of genomic overlap enrichment, including the plyranges Bioconductor package.
This package provides a tool to search and download a collection of tumour microenvironment single-cell RNA sequencing datasets and their metadata. TMExplorer aims to act as a single point of entry for users looking to study the tumour microenvironment at the single cell level. Users can quickly search available datasets using the metadata table and then download the ones they are interested in for analysis.
This package provides a comprehensive package for visualizing multi-set intersections and extracting detailed subset information. VennDetail generates high-resolution visualizations including traditional Venn diagrams, Venn-pie plots, and UpSet-style plots. It provides functions to extract and combine subset details with user datasets in various formats. The package is particularly useful for bioinformatics applications but can be used for any multi-set analysis.
This package facilitates phyloseq exploration and analysis of taxonomic profiling data. This package provides tools for the manipulation, statistical analysis, and visualization of taxonomic profiling data. In addition to targeted case-control studies, microbiome facilitates scalable exploration of population cohorts. This package supports the independent phyloseq data format and expands the available toolkit in order to facilitate the standardization of the analyses and the development of best practices.
The package provides ready to use epigenomes (obtained from TWGBS) and transcriptomes (RNA-seq) from various tissues as obtained in the study (Delacher and Imbusch 2017, PMID: 28783152). Regulatory T cells (Treg cells) perform two distinct functions: they maintain self-tolerance, and they support organ homeostasis by differentiating into specialized tissue Treg cells. The underlying dataset characterises the epigenetic and transcriptomic modifications for specialized tissue Treg cells.
The Open MPI Project is an MPI-3 implementation that is developed and maintained by a consortium of academic, research, and industry partners. Open MPI is therefore able to combine the expertise, technologies, and resources from all across the High Performance Computing community in order to build the best MPI library available. Open MPI offers advantages for system and software vendors, application developers and computer science researchers.
The fit.models function and its associated methods (coefficients, print, summary, plot, etc.) were originally provided in the robust package to compare robustly and classically fitted model objects. The aim of the fit.models package is to separate this fitted model object comparison functionality from the robust package and to extend it to support fitting methods (e.g., classical, robust, Bayesian, regularized, etc.) more generally.
This package implements an approximate string matching version of R's native match function. It can calculate various string distances based on edits (Damerau-Levenshtein, Hamming, Levenshtein, optimal string alignment), qgrams (q- gram, cosine, jaccard distance) or heuristic metrics (Jaro, Jaro-Winkler). An implementation of soundex is provided as well. Distances can be computed between character vectors while taking proper care of encoding or between integer vectors representing generic sequences.
The Racket BC (``before Chez'' or ``bytecode'') implementation was the default before Racket 8.0. It uses a compiler written in C targeting architecture-independent bytecode, plus a JIT compiler on most platforms. Racket BC has a different C API than the current default runtime system, Racket CS (based on ``Chez Scheme'').
This package is the normal implementation of Racket BC with a precise garbage collector, 3M (``Moving Memory Manager'').
The fonts provide uppercase formal script letters for use as symbols in scientific and mathematical typesetting (in contrast to the informal script fonts such as that used for the calligraphic symbols in the TeX maths symbol font). The fonts are provided as Metafont source, and as derived Adobe Type 1 format. LaTeX support, for using these fonts in mathematics, is available via one of the packages calrsfs and mathrsfs.
Group-Lasso INTERaction-NET. Fits linear pairwise-interaction models that satisfy strong hierarchy: if an interaction coefficient is estimated to be nonzero, then its two associated main effects also have nonzero estimated coefficients. Accommodates categorical variables (factors) with arbitrary numbers of levels, continuous variables, and combinations thereof. Implements the machinery described in the paper "Learning interactions via hierarchical group-lasso regularization" (JCGS 2015, Volume 24, Issue 3). Michael Lim & Trevor Hastie (2015)
Rustic is a fork of Rust mode. In addition to its predecessor, it offers the following features:
Flycheck integration,
Cargo popup,
multiline error parsing,
translation of ANSI control sequences through XTerm color,
asynchronous Org Babel,
custom compilation process,
rustfmterrors in a Rust compilation mode,automatic LSP configuration with Eglot or LSP mode,
optional Rust inline documentation,
etc.
The Hashery is a tight collection of Hash-like classes. Included are the auto-sorting Dictionary class, the efficient LRUHash, the flexible OpenHash and the convenient KeyHash. Nearly every class is a subclass of the CRUDHash which defines a CRUD (Create, Read, Update and Delete) model on top of Ruby's standard Hash making it possible to subclass and augment to fit any specific use case.
MSstatsPTM provides general statistical methods for quantitative characterization of post-translational modifications (PTMs). Supports DDA, DIA, SRM, and tandem mass tag (TMT) labeling. Typically, the analysis involves the quantification of PTM sites (i.e., modified residues) and their corresponding proteins, as well as the integration of the quantification results. MSstatsPTM provides functions for summarization, estimation of PTM site abundance, and detection of changes in PTMs across experimental conditions.
This package provides a shiny interface to the scanMiR package. The application enables the scanning of transcripts and custom sequences for miRNA binding sites, the visualization of KdModels and binding results, as well as browsing predicted repression data. In addition contains the IndexedFst class for fast indexed reading of large GenomicRanges or data.frames, and some utilities for facilitating scans and identifying enriched miRNA-target pairs.
This package provides some easy-to-use functions to extract and visualize the output of multivariate data analyses, including PCA (Principal Component Analysis), CA (Correspondence Analysis), MCA (Multiple Correspondence Analysis), FAMD (Factor Analysis of Mixed Data), MFA (Multiple Factor Analysis) and HMFA (Hierarchical Multiple Factor Analysis) functions from different R packages. It contains also functions for simplifying some clustering analysis steps and provides ggplot2-based elegant data visualization.
As a successor of the packages BatchJobs and BatchExperiments, this package provides a parallel implementation of the Map function for high performance computing systems managed by various schedulers. A multicore and socket mode allow the parallelization on a local machines, and multiple machines can be hooked up via SSH to create a makeshift cluster. Moreover, the package provides an abstraction mechanism to define large-scale computer experiments in a well-organized and reproducible way.
xwayland-run contains a set of small utilities revolving around running Xwayland and various Wayland compositor headless, namely:
xwayland-run: Spawn X11 client within its own dedicatedXwaylandrootful instance.wlheadless-run: Run Wayland client on a set of supported Wayland headless compositors.xwfb-run: Combination of above two tools to be used as a direct replacement forxvfb-runspecifically.
Basic4Cseq is an R package for basic filtering, analysis and subsequent visualization of 4C-seq data. Virtual fragment libraries can be created for any BSGenome package, and filter functions for both reads and fragments and basic quality controls are included. Fragment data in the vicinity of the experiment's viewpoint can be visualized as a coverage plot based on a running median approach and a multi-scale contact profile.