Subset of BAM files of human lung tumor and pooled normal samples by targeted panel sequencing. [Zhao et al 2014. Targeted Sequencing in Non-Small Cell Lung Cancer (NSCLC) Using the University of North Carolina (UNC) Sequencing Assay Captures Most Previously Described Genetic Aberrations in NSCLC. In preparation.] Each sample is a 10 percent random subsample drawn from the original sequencing data. The pooled normal sample has been rescaled accroding to the total number of normal samples in the "pool". Here provided is the subsampled data on chr6 (hg19).
This R package provides tools for building and running automated end-to-end analysis workflows for a wide range of next generation sequence (NGS) applications such as RNA-Seq, ChIP-Seq, VAR-Seq and Ribo-Seq. Important features include a uniform workflow interface across different NGS applications, automated report generation, and support for running both R and command-line software, such as NGS aligners or peak/variant callers, on local computers or compute clusters. Efficient handling of complex sample sets and experimental designs is facilitated by a consistently implemented sample annotation infrastructure.
This package provides tools for testing, monitoring and dating structural changes in (linear) regression models. It features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g., CUSUM, MOSUM, recursive/moving estimates) and F statistics, respectively. It is possible to monitor incoming data online using fluctuation processes. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals. Emphasis is always given to methods for visualizing the data.
Animalcules is an R package for utilizing up-to-date data analytics, visualization methods, and machine learning models to provide users an easy-to-use interactive microbiome analysis framework. It can be used as a standalone software package or users can explore their data with the accompanying interactive R Shiny application. Traditional microbiome analysis such as alpha/beta diversity and differential abundance analysis are enhanced, while new methods like biomarker identification are introduced by animalcules. Powerful interactive and dynamic figures generated by animalcules enable users to understand their data better and discover new insights.
This variant of the Racket BC (``before Chez'' or ``bytecode'') implementation is not recommended for general use. It uses CGC (a ``Conservative Garbage Collector''), which was succeeded as default in PLT Scheme version 370 (which translates to 3.7 in the current versioning scheme) by the 3M variant, which in turn was succeeded in version 8.0 by the Racket CS implementation.
Racket CGC is primarily used for bootstrapping Racket BC [3M]. It may also be used for embedding applications without the annotations needed in C code to use the 3M garbage collector.
MotifPeeker is used to compare and analyse datasets from epigenomic profiling methods with motif enrichment as the key benchmark. The package outputs an HTML report consisting of three sections: (1. General Metrics) Overview of peaks-related general metrics for the datasets (FRiP scores, peak widths and motif-summit distances). (2. Known Motif Enrichment Analysis) Statistics for the frequency of user-provided motifs enriched in the datasets. (3. De-Novo Motif Enrichment Analysis) Statistics for the frequency of de-novo discovered motifs enriched in the datasets and compared with known motifs.
This package implements quantile smoothing. It contains a dataset used to produce human chromosomal ideograms for plotting purposes and a collection of arrays that contains data of chromosome 14 of 3 colorectal tumors. The package provides functions for painting chromosomal icons, chromosome or chromosomal idiogram and other types of plots. Quantsmooth offers options like converting chromosomal ids to their numeric form, retrieving the human chromosomal length from NCBI data, retrieving regions of interest in a vector of intensities using quantile smoothing, determining cytoband position based on the location of the probe, and other useful tools.
This package performs hybrid multiple testing that incorporates method selection and assumption evaluations into the analysis using EBP estimates obtained by Grenander density estimation. For instance, for 3-group comparison analysis, Hybrid Multiple testing considers EBPs as weighted EBPs between F-test and H-test with EBPs from Shapiro Wilk test of normality as weight. Instead of just using EBPs from F-test only or using H-test only, this methodology combines both types of EBPs through EBPs from Shapiro Wilk test of normality. This methodology uses then the law of total EBPs.
seq.hotSPOT provides a resource for designing effective sequencing panels to help improve mutation capture efficacy for ultradeep sequencing projects. Using SNV datasets, this package designs custom panels for any tissue of interest and identify the genomic regions likely to contain the most mutations. Establishing efficient targeted sequencing panels can allow researchers to study mutation burden in tissues at high depth without the economic burden of whole-exome or whole-genome sequencing. This tool was developed to make high-depth sequencing panels to study low-frequency clonal mutations in clinically normal and cancerous tissues.
This package provides infrastructure for psychometric modeling such as data classes (for item response data and paired comparisons), basic model fitting functions (for Bradley-Terry, Rasch, parametric logistic IRT, generalized partial credit, rating scale, multinomial processing tree models), extractor functions for different types of parameters (item, person, threshold, discrimination, guessing, upper asymptotes), unified inference and visualizations, and various datasets for illustration. It is intended as a common lightweight and efficient toolbox for psychometric modeling and a common building block for fitting psychometric mixture models in package psychomix and trees based on psychometric models in package psychotree.
Trigger-rally is a 3D rally simulation with great physics for drifting on over 200 maps. Different terrain materials like dirt, asphalt, sand, ice, etc. and various weather, light, and fog conditions give this rally simulation the edge over many other games. You need to make it through the maps in often tight time limits and can further improve by beating the recorded high scores. All attached single races must be finished in time in order to win an event, unlocking additional events and cars. Most maps are equipped with spoken co-driver notes and co-driver icons.
rabbitmqadmin is a tool to manage RabbitMQ broker via management plugin.
It supports many of the operations available in the management UI:
Listing objects like virtual hosts, users, queues, streams, permissions, policies, and so on.
Creating objects.
Deleting objects.
Access to cluster and node metrics.
Run health checks.
Listing feature flag state.
Listing deprecated features in use across the cluster.
Definition export, transformations, and import.
Operations on shovels.
Operations on federation upstreams and links.
Closing connections.
Rebalancing of queue leaders across cluster nodes.
The ProteinGymR package provides analysis-ready data resources from ProteinGym, generated by Notin et al., 2023, as well as built-in functionality to visualize the data. ProteinGym comprises a collection of benchmarks for evaluating the performance of models predicting the effect of point mutations. This package provides access to 1. deep mutational scanning (DMS) scores from 217 assays measuring the impact of all possible amino acid substitutions across 186 proteins, 2. model performance metrics and prediction scores from 79 variant prediction models in the zero-shot setting and 12 models in the semi-supervised setting.
The MSstatsLOBD package allows calculation and visualization of limit of blac (LOB) and limit of detection (LOD). We define the LOB as the highest apparent concentration of a peptide expected when replicates of a blank sample containing no peptides are measured. The LOD is defined as the measured concentration value for which the probability of falsely claiming the absence of a peptide in the sample is 0.05, given a probability 0.05 of falsely claiming its presence. These functionalities were previously a part of the MSstats package. The methodology is described in Galitzine (2018) <doi:10.1074/mcp.RA117.000322>.
Samples large data such that spectral clustering is possible while preserving density information in edge weights. More specifically, given a matrix of coordinates as input, SamSPECTRAL first builds the communities to sample the data points. Then, it builds a graph and after weighting the edges by conductance computation, the graph is passed to a classic spectral clustering algorithm to find the spectral clusters. The last stage of SamSPECTRAL is to combine the spectral clusters. The resulting "connected components" estimate biological cell populations in the data. See the vignette for more details on how to use this package, some illustrations, and simple examples.
The SparseArray package is an infrastructure package that provides an array-like container for efficient in-memory representation of multidimensional sparse data in R. The package defines the SparseArray virtual class and two concrete subclasses: COO_SparseArray and SVT_SparseArray. Each subclass uses its own internal representation of the nonzero multidimensional data, the "COO layout" and the "SVT layout", respectively. SVT_SparseArray objects mimic as much as possible the behavior of ordinary matrix and array objects in base R. In particular, they support most of the "standard matrix and array API" defined in base R and in the matrixStats package from CRAN.
This package allows biologists to judge in the first place whether the sequence surrounding the polymorphism is a good match, and in the second place how much information is gained or lost in one allele of the polymorphism relative to another. This package gives a choice of algorithms for interrogation of genomes with motifs from public sources:
a weighted-sum probability matrix;
log-probabilities;
weighted by relative entropy.
This package can predict effects for novel or previously described variants in public databases, making it suitable for tasks beyond the scope of its original design. Lastly, it can be used to interrogate any genome curated within Bioconductor.
This is a collection of tools for assessment of feature importance and feature effects. Key functions are:
feature_importance()for assessment of global level feature importance,ceteris_paribus()for calculation of the what-if plots,partial_dependence()for partial dependence plots,conditional_dependence()for conditional dependence plots,accumulated_dependence()for accumulated local effects plots,aggregate_profiles()andcluster_profiles()for aggregation of ceteris paribus profiles,generic
print()andplot()for better usability of selected explainers,generic
plotD3()for interactive, D3 based explanations, andgeneric
describe()for explanations in natural language.
The package provides functionality that can be useful for the analysis of the high-density tiling microarray data (such as from Affymetrix genechips) or for measuring the transcript abundance and the architecture. The main functionalities of the package are:
the class segmentation for representing partitionings of a linear series of data;
the function segment for fitting piecewise constant models using a dynamic programming algorithm that is both fast and exact;
the function
confintfor calculating confidence intervals using thestrucchangepackage;the function
plotAlongChromfor generating pretty plots;the function
normalizeByReferencefor probe-sequence dependent response adjustment from a (set of) reference hybridizations.
This package provides a shiny app-based GUI wrapper for ggplot with built-in statistical analysis. Import data from file and use dropdown menus and checkboxes to specify the plotting variables, graph type, and look of your plots. Once created, plots can be saved independently or stored in a report that can be saved as a pdf. If new data are added to the file, the report can be refreshed to include new data. Statistical tests can be selected and added to the graphs. Analysis of flow cytometry data is especially integrated with plotGrouper. Count data can be transformed to return the absolute number of cells in a sample (this feature requires inclusion of the number of beads per sample and information about any dilution performed).
Extends the Seurat classes and functions to support Genomic Data Structure (GDS) files as a DelayedArray backend for data representation. It relies on the implementation of GDS-based DelayedMatrix in the SCArray package to represent single cell RNA-seq data. The common optimized algorithms leveraging GDS-based and single cell-specific DelayedMatrix (SC_GDSMatrix) are implemented in the SCArray package. SCArray.sat introduces a new SCArrayAssay class (derived from the Seurat Assay), which wraps raw counts, normalized expressions and scaled data matrix based on GDS-specific DelayedMatrix. It is designed to integrate seamlessly with the Seurat package to provide common data analysis in the SeuratObject-based workflow. Compared with Seurat, SCArray.sat significantly reduces the memory usage without downsampling and can be applied to very large datasets.
Detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods: Rank Product, Translational Efficiency, t-test, Limma, ANOTA, DESeq, edgeR. Possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots. Detection of significantly enriched post-transcriptional regulatory factors (RBPs, miRNAs, etc) and Gene Ontology terms in the lists of DEGs previously identified for the two expression levels. Comparison of GO terms enriched only in one of the levels or in both. Calculation of the semantic similarity score between the lists of enriched GO terms coming from the two expression levels. Visual examination and comparison of the enriched terms with heatmaps, radar plots and barplots.
This is a heavily modified fork of http://github.com/defunkt/colored gem, with many sensible pull requests combined. Since the authors of the original gem no longer support it, this might, perhaps, be considered a good alternative.
Simple gem that adds various color methods to String class, and can be used as follows:
require 'colored2'
puts 'this is red'.red puts 'this is red with a yellow background'.red.on.yellow puts 'this is red with and italic'.red.italic puts 'this is green bold'.green.bold << ' and regular'.green puts 'this is really bold blue on white but reversed'.bold.blue.on.white.reversed puts 'this is regular, but '.red! << 'this is red '.yellow! << ' and yellow.'.no_color! puts ('this is regular, but '.red! do 'this is red '.yellow! do ' and yellow.'.no_color! end end)
The C++ header files of the Stan project are provided by this package. There is a shared object containing part of the CVODES library, but it is not accessible from R. r-stanheaders is only useful for developers who want to utilize the LinkingTo directive of their package's DESCRIPTION file to build on the Stan library without incurring unnecessary dependencies.
The Stan project develops a probabilistic programming language that implements full or approximate Bayesian statistical inference via Markov Chain Monte Carlo or variational methods and implements (optionally penalized) maximum likelihood estimation via optimization. The Stan library includes an advanced automatic differentiation scheme, templated statistical and linear algebra functions that can handle the automatically differentiable scalar types (and doubles, ints, etc.), and a parser for the Stan language. The r-rstan package provides user-facing R functions to parse, compile, test, estimate, and analyze Stan models.