Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Explore data related to the Doctor Who TV series.
This package provides functions to import multiple files of multiple data file types ('.xlsx', .xls', .csv', .txt') from a given directory into R data frames.
Multivariate Gaussian mixture model with a determinant point process prior to promote the discovery of parsimonious components from observed data. See Xu, Mueller, Telesca (2016) <doi:10.1111/biom.12482>.
Makes deck.gl <https://deck.gl/>, a WebGL-powered open-source JavaScript framework for visual exploratory data analysis of large datasets, available within R via the htmlwidgets package. Furthermore, it supports basemaps from mapbox <https://www.mapbox.com/> via mapbox-gl-js <https://github.com/mapbox/mapbox-gl-js>.
Supports import/export for a number of datetime string standards and R datetime classes often including lossless re-export of any original reduced precision including ISO 8601 <https://en.wikipedia.org/wiki/ISO_8601> and pdfmark <https://opensource.adobe.com/dc-acrobat-sdk-docs/library/pdfmark/> datetime strings. Supports local/global datetimes with optional UTC offsets and/or (possibly heterogeneous) time zones with up to nanosecond precision.
Estimation of DIFferential COexpressed NETworks using diverse and user metrics. This package is basically used for three functions related to the estimation of differential coexpression. First, to estimate differential coexpression where the coexpression is estimated, by default, by Spearman correlation. For this, a metric to compare two correlation distributions is needed. The package includes 6 metrics. Some of them needs a threshold. A new metric can also be specified as a user function with specific parameters (see difconet.run). The significance is be estimated by permutations. Second, to generate datasets with controlled differential correlation data. This is done by either adding noise, or adding specific correlation structure. Third, to show the results of differential correlation analyses. Please see <http://bioinformatica.mty.itesm.mx/difconet> for further information.
Fast fitting of generalised linear models on moderately large datasets, by taking an initial sample, fitting in memory, then evaluating the score function for the full data in the database. Thomas Lumley <doi:10.1080/10618600.2019.1610312>.
This package provides a framework for creating production outputs. Users can frame a table, listing, or figure with headers and footers and save to an output file. Stores an intermediate docorator object for reproducibility and rendering to multiple output types.
This package performs drug demand forecasting by modeling drug dispensing data while taking into account predicted enrollment and treatment discontinuation dates. The gap time between randomization and the first drug dispensing visit is modeled using interval-censored exponential, Weibull, log-logistic, or log-normal distributions (Anderson-Bergman (2017) <doi:10.18637/jss.v081.i12>). The number of skipped visits is modeled using Poisson, zero-inflated Poisson, or negative binomial distributions (Zeileis, Kleiber & Jackman (2008) <doi:10.18637/jss.v027.i08>). The gap time between two consecutive drug dispensing visits given the number of skipped visits is modeled using linear regression based on least squares or least absolute deviations (Birkes & Dodge (1993, ISBN:0-471-56881-3)). The number of dispensed doses is modeled using linear or linear mixed-effects models (McCulloch & Searle (2001, ISBN:0-471-19364-X)).
Generate balanced factorial designs with crossed and nested random and fixed effects <https://github.com/mmrabe/designr>.
This package provides a parallel backend for the %dopar% function using the Rmpi package.
This package provides a comprehensive toolkit for analyzing microscopy data output from QuPath software. Provides functionality for automated data processing, metadata extraction, and statistical analysis of imaging results. The methodology implemented in this package is based on Labrosse et al. (2024) <doi:10.1016/j.xpro.2024.103274> "Protocol for quantifying drug sensitivity in 3D patient-derived ovarian cancer models", which describes the complete workflow for drug sensitivity analysis in patient-derived cancer models.
This package provides a set of algorithms based on Quinn et al. (1991) <doi:10.1002/hyp.3360050106> for processing river network and digital elevation data to build implementations of Dynamic TOPMODEL, a semi-distributed hydrological model proposed in Beven and Freer (2001) <doi:10.1002/hyp.252>. The dynatop package implements simulation code for Dynamic TOPMODEL based on the output of dynatopGIS'.
Allows humanitarian community, academia, media, government, and non-governmental organizations to utilize the data collected by the Displacement Tracking Matrix (<https://dtm.iom.int>), a unit in the International Organization for Migration. This also provides non-sensitive Internally Displaced Person figures, aggregated at the country, Admin 1 (states, provinces, or equivalent), and Admin 2 (smaller administrative areas) levels.
Manipulates date ('Date'), date time ('POSIXct') and time ('hms') vectors. Date/times are considered discrete and are floored whenever encountered. Times are wrapped and time zones are maintained unless explicitly altered by the user.
This package implements the DAAREM method for accelerating the convergence of slow, monotone sequences from smooth, fixed-point iterations such as the EM algorithm. For further details about the DAAREM method, see Henderson, N.C. and Varadhan, R. (2019) <doi:10.1080/10618600.2019.1594835>.
Identification of causal effects from arbitrary observational and experimental probability distributions via do-calculus and standard probability manipulations using a search-based algorithm by Tikka, Hyttinen and Karvanen (2021) <doi:10.18637/jss.v099.i05>. Allows for the presence of mechanisms related to selection bias (Bareinboim and Tian, 2015) <doi:10.1609/aaai.v29i1.9679>, transportability (Bareinboim and Pearl, 2014) <http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf>, missing data (Mohan, Pearl, and Tian, 2013) <http://ftp.cs.ucla.edu/pub/stat_ser/r410.pdf>) and arbitrary combinations of these. Also supports identification in the presence of context-specific independence (CSI) relations through labeled directed acyclic graphs (LDAG). For details on CSIs see (Corander et al., 2019) <doi:10.1016/j.apal.2019.04.004>.
This package provides functions for direct surrogate variable analysis, which can identify hidden factors in high-dimensional biomedical data.
Facilitates the import and analysis of SNP (single nucleotide polymorphism') and silicodart (presence/absence) data. The main focus is on data generated by DarT (Diversity Arrays Technology), however, data from other sequencing platforms can be used once SNP or related fragment presence/absence data from any source is imported. Genetic datasets are stored in a derived genlight format (package adegenet'), that allows for a very compact storage of data and metadata. Functions are available for importing and exporting of SNP and silicodart data, for reporting on and filtering on various criteria (e.g. callrate', heterozygosity', reproducibility', maximum allele frequency). Additional functions are available for visualization (e.g. Principle Coordinate Analysis) and creating a spatial representation using maps. dartR.base is the base package of the dartRverse suits of packages. To install the other packages, we recommend to install the dartRverse package, that supports the installation of all packages in the dartRverse'. If you want to cite dartR', you find the information by typing citation('dartR.base') in the console.
This package provides a method for identifying pattern changes between 2 experimental conditions in correlation networks (e.g., gene co-expression networks), which builds on a commonly used association measure, such as Pearson's correlation coefficient. This package includes functions to calculate correlation matrices for high-dimensional dataset and to test differential correlation, which means the changes in the correlation relationship among variables (e.g., genes and metabolites) between 2 experimental conditions.
Density estimation for possibly large data sets and conditional/unconditional random number generation or bootstrapping with distribution element trees. The function det.construct translates a dataset into a distribution element tree. To evaluate the probability density based on a previously computed tree at arbitrary query points, the function det.query is available. The functions det1 and det2 provide density estimation and plotting for one- and two-dimensional datasets. Conditional/unconditional smooth bootstrapping from an available distribution element tree can be performed by det.rnd'. For more details on distribution element trees, see: Meyer, D.W. (2016) <arXiv:1610.00345> or Meyer, D.W., Statistics and Computing (2017) <doi:10.1007/s11222-017-9751-9> and Meyer, D.W. (2017) <arXiv:1711.04632> or Meyer, D.W., Journal of Computational and Graphical Statistics (2018) <doi:10.1080/10618600.2018.1482768>.
It is used to identify dysregulated pathways based on a pre-ranked gene pair list. A fast algorithm is used to make the computation really fast. The data in package DysPIAData is needed.
This package provides a non-drawing graphic device for benchmarking purpose. In order to properly benchmark graphic drawing code it is necessary to factor out the device implementation itself so that results are not related to the specific graphics device used during benchmarking. The devoid package implements a graphic device that accepts all the required calls from R's graphic engine but performs no action. Apart from benchmarking it is unlikely that this device has any practical use.
This package creates full factorial experimental designs and designs based on orthogonal arrays for (industrial) experiments. Provides diverse quality criteria. Provides utility functions for the class design, which is also used by other packages for designed experiments.