This package provides a streamlined and user-friendly framework for bootstrapping in state space models, particularly when the number of subjects/units (n) exceeds one, a scenario commonly encountered in social and behavioral sciences. For an introduction to state space models in social and behavioral sciences, refer to Chow, Ho, Hamaker, and Dolan (2010) <doi:10.1080/10705511003661553>.
This package implements a bootstrap-based heterogeneity test for standardized mean differences (d), Fisher-transformed Pearson's correlations (r), and natural-logarithm-transformed odds ratio (or) in meta-analysis studies. Depending on the presence of moderators, this Monte Carlo based test can be implemented in the random- or mixed-effects model. This package uses rma()
function from the R package metafor to obtain parameter estimates and likelihoods, so installation of R package metafor is required. This approach refers to the studies of Anscombe (1956) <doi:10.2307/2332926>, Haldane (1940) <doi:10.2307/2332614>, Hedges (1981) <doi:10.3102/10769986006002107>, Hedges & Olkin (1985, ISBN:978-0123363800), Silagy, Lancaster, Stead, Mant, & Fowler (2004) <doi:10.1002/14651858.CD000146.pub2>, Viechtbauer (2010) <doi:10.18637/jss.v036.i03>, and Zuckerman (1994, ISBN:978-0521432009).