This package contains elementary tools for analysis of common epidemiological problems, ranging from sample size estimation, through 2x2 contingency table analysis and basic measures of agreement (kappa, sensitivity/specificity). Appropriate print and summary statements are also written to facilitate interpretation wherever possible. Source code is commented throughout to facilitate modification. The target audience includes advanced undergraduate and graduate students in epidemiology or biostatistics courses, and clinical researchers.
This is a collection of assorted functions and examples collected from various projects. Currently we have functionalities for simplifying overlapping time intervals, Charlson comorbidity score constructors for Danish data, getting frequency for multiple variables, getting standardized output from logistic and log-linear regressions, sibling design linear regression functionalities a method for calculating the confidence intervals for functions of parameters from a GLM, Bayes equivalent for hypothesis testing with asymptotic Bayes factor, and several help functions for generalized random forest analysis using grf'.
This package provides tools for simulating mathematical models of infectious disease dynamics. Epidemic model classes include deterministic compartmental models, stochastic individual-contact models, and stochastic network models. Network models use the robust statistical methods of exponential-family random graph models (ERGMs) from the Statnet suite of software packages in R. Standard templates for epidemic modeling include SI, SIR, and SIS disease types. EpiModel
features an API for extending these templates to address novel scientific research aims. Full methods for EpiModel
are detailed in Jenness et al. (2018, <doi:10.18637/jss.v084.i08>).
This package provides a collection of fast and flexible functions for analyzing omics data in observational studies. Multiple different approaches for integrating multiple environmental/genetic factors, omics data, and/or phenotype data are implemented. This includes functions for performing omics wide association studies with one or more variables of interest as the exposure or outcome; a function for performing a meet in the middle analysis for linking exposures, omics, and outcomes (as described by Chadeau-Hyam et al., (2010) <doi:10.3109/1354750X.2010.533285>); and a function for performing a mixtures analysis across all omics features using quantile-based g-Computation (as described by Keil et al., (2019) <doi:10.1289/EHP5838>).
This package provides set of functions aimed at epidemiologists. The package includes commands for measures of association and impact for case control studies and cohort studies. It may be particularly useful for outbreak investigations including univariable analysis and stratified analysis. The functions for cohort studies include the CS()
, CSTable()
and CSInter()
commands. The functions for case control studies include the CC()
, CCTable()
and CCInter()
commands. References - Cornfield, J. 1956. A statistical problem arising from retrospective studies. In Vol. 4 of Proceedings of the Third Berkeley Symposium, ed. J. Neyman, 135-148. Berkeley, CA - University of California Press. Woolf, B. 1955. On estimating the relation between blood group disease. Annals of Human Genetics 19 251-253. Reprinted in Evolution of Epidemiologic Ideas Annotated Readings on Concepts and Methods, ed. S. Greenland, pp. 108-110. Newton Lower Falls, MA Epidemiology Resources. Gilles Desve & Peter Makary, 2007. CSTABLE Stata module to calculate summary table for cohort study Statistical Software Components S456879, Boston College Department of Economics. Gilles Desve & Peter Makary, 2007. CCTABLE Stata module to calculate summary table for case-control study Statistical Software Components S456878, Boston College Department of Economics.
Create causal models for use in epidemiological studies, including sufficient-component cause models as introduced by Rothman (1976) <doi:10.1093/oxfordjournals.aje.a112335>.
Offers a tidy solution for epidemiological data. It houses a range of functions for epidemiologists and public health data wizards for data management and cleaning.
This package provides methods to simulate and analyse the size and length of branching processes with an arbitrary offspring distribution. These can be used, for example, to analyse the distribution of chain sizes or length of infectious disease outbreaks, as discussed in Farrington et al. (2003) <doi:10.1093/biostatistics/4.2.279>.
This extension of the pattern-oriented modeling framework of the poems package provides a collection of modules and functions customized for modeling disease transmission on a population scale in a spatiotemporally explicit manner. This includes seasonal time steps, dispersal functions that track disease state of dispersers, results objects that store disease states, and a population simulator that includes disease dynamics.
Using variational techniques we address some epidemiological problems as the incidence curve decomposition by inverting the renewal equation as described in Alvarez et al. (2021) <doi:10.1073/pnas.2105112118> and Alvarez et al. (2022) <doi:10.3390/biology11040540> or the estimation of the functional relationship between epidemiological indicators. We also propose a learning method for the short time forecast of the trend incidence curve as described in Morel et al. (2022) <doi:10.1101/2022.11.05.22281904>.
Analysis and visualization of plant disease progress curve data. Functions for fitting two-parameter population dynamics models (exponential, monomolecular, logistic and Gompertz) to proportion data for single or multiple epidemics using either linear or no-linear regression. Statistical and visual outputs are provided to aid in model selection. Synthetic curves can be simulated for any of the models given the parameters. See Laurence V. Madden, Gareth Hughes, and Frank van den Bosch (2007) <doi:10.1094/9780890545058> for further information on the methods.
This package provides a flexible framework for Agent-Based Models (ABM), the epiworldR
package provides methods for prototyping disease outbreaks and transmission models using a C++ backend, making it very fast. It supports multiple epidemiological models, including the Susceptible-Infected-Susceptible (SIS), Susceptible-Infected-Removed (SIR), Susceptible-Exposed-Infected-Removed (SEIR), and others, involving arbitrary mitigation policies and multiple-disease models. Users can specify infectiousness/susceptibility rates as a function of agents features, providing great complexity for the model dynamics. Furthermore, epiworldR
is ideal for simulation studies featuring large populations.
DNA methylation (6mA
) is a major epigenetic process by which alteration in gene expression took place without changing the DNA sequence. Predicting these sites in-vitro is laborious, time consuming as well as costly. This EpiSemble
package is an in-silico pipeline for predicting DNA sequences containing the 6mA
sites. It uses an ensemble-based machine learning approach by combining Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting approach to predict the sequences with 6mA
sites in it. This package has been developed by using the concept of Chen et al. (2019) <doi:10.1093/bioinformatics/btz015>.
Drafting an epidemiological report in Microsoft Word format for a given disease, similar to the Annual Epidemiological Reports published by the European Centre for Disease Prevention and Control. Through standalone functions, it is specifically designed to generate each disease specific output presented in these reports and includes: - Table with the distribution of cases by Member State over the last five years; - Seasonality plot with the distribution of cases at the European Union / European Economic Area level, by month, over the past five years; - Trend plot with the trend and number of cases at the European Union / European Economic Area level, by month, over the past five years; - Age and gender bar graph with the distribution of cases at the European Union / European Economic Area level. Two types of datasets can be used: - The default dataset of dengue 2015-2019 data; - Any dataset specified as described in the vignette.
Package for data exploration and result presentation. Full epicalc package with data management functions is available at <https://medipe.psu.ac.th/epicalc/>'.
The interface package to access data from the EpiGraphDB
<https://epigraphdb.org> platform. It provides easy access to the EpiGraphDB
platform with functions that query the corresponding REST endpoints on the API <https://api.epigraphdb.org> and return the response data in the tibble data frame format.
Method and tool for generating time series forecasts using an ensemble wavelet-based auto-regressive neural network architecture. This method provides additional support of exogenous variables and also generates confidence interval. This package provides EWNet model for time series forecasting based on the algorithm by Panja, et al. (2022) and Panja, et al. (2023) <arXiv:2206.10696>
<doi:10.1016/j.chaos.2023.113124>.
Mathematical models of infectious diseases in humans and animals. Both, deterministic and stochastic models can be simulated and plotted.
This package provides a collection of tools for representing epidemiological contact data, composed of case line lists and contacts between cases. Also contains procedures for data handling, interactive graphics, and statistics.
This package provides classes and helper functions for loading, extracting, converting, manipulating, plotting and aggregating epidemiological parameters for infectious diseases. Epidemiological parameters extracted from the literature are loaded from the epiparameterDB
R package.
Maximum likelihood estimation of nonlinear mixed effects models of epidemic growth using Template Model Builder ('TMB'). Enables joint estimation for collections of disease incidence time series, including time series that describe multiple epidemic waves. Supports a set of widely used phenomenological models: exponential, logistic, Richards (generalized logistic), subexponential, and Gompertz. Provides methods for interrogating model objects and several auxiliary functions, including one for computing basic reproduction numbers from fitted values of the initial exponential growth rate. Preliminary versions of this software were applied in Ma et al. (2014) <doi:10.1007/s11538-013-9918-2> and in Earn et al. (2020) <doi:10.1073/pnas.2004904117>.
This package provides a data package containing a database of epidemiological parameters. It stores the data for the epiparameter R package. Epidemiological parameter estimates are extracted from the literature.
R shiny web apps for epidemiological Agent-Based Models. It provides a user-friendly interface to the Agent-Based Modeling (ABM) R package epiworldR
(Meyer et al., 2023) <DOI:10.21105/joss.05781>. Some of the main features of the package include the Susceptible-Infected-Susceptible (SIS), Susceptible-Infected-Recovered (SIR), and Susceptible-Exposed-Infected-Recovered (SEIR) models. epiworldRShiny
provides a web-based user interface for running various epidemiological ABMs, simulating interventions, and visualizing results interactively.
Routines for epidemiological contact tracing and visualisation of network of contacts.