_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-saehb-me-beta 1.1.0
Propagated dependencies: r-stringr@1.5.1 r-rjags@4-16 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ratihrodliyah/saeHB.ME.beta
Licenses: GPL 3
Synopsis: SAE with Measurement Error using HB under Beta Distribution
Description:

Implementation of Small Area Estimation (SAE) using Hierarchical Bayesian (HB) Method when auxiliary variable measured with error under Beta Distribution. The rjags package is employed to obtain parameter estimates. For the references, see J.N.K & Molina (2015) <doi:10.1002/9781118735855>, Ybarra and Sharon (2008) <doi:10.1093/biomet/asn048>, and Ntzoufras (2009, ISBN-10: 1118210352).

r-saehb-spatial 0.1.1
Dependencies: jags@4.3.1
Propagated dependencies: r-stringr@1.5.1 r-rjags@4-16 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/arinams/saeHB.spatial
Licenses: GPL 3
Synopsis: Small Area Estimation Hierarchical Bayes For Spatial Model
Description:

This package provides several functions and datasets for area level of Small Area Estimation under Spatial Model using Hierarchical Bayesian (HB) Method. Model-based estimators include the HB estimators based on a Spatial Fay-Herriot model with univariate normal distribution for variable of interest.The rjags package is employed to obtain parameter estimates. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>.

r-saehb-twofold 0.1.2
Dependencies: jags@4.3.1
Propagated dependencies: r-stringr@1.5.1 r-rjags@4-16 r-data-table@1.16.2 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/reymath99/saeHB.twofold
Licenses: GPL 3
Synopsis: Hierarchical Bayes Twofold Subarea Level Model SAE
Description:

We designed this package to provides several functions for area and subarea level of small area estimation under Twofold Subarea Level Model using hierarchical Bayesian (HB) method with Univariate Normal distribution for variables of interest. Some dataset simulated by a data generation are also provided. The rjags package is employed to obtain parameter estimates using Gibbs Sampling algorithm. Model-based estimators involves the HB estimators which include the mean, the variation of mean, and the quantile. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Torabi and Rao (2014) <doi:10.1016/j.jmva.2014.02.001>, Leyla Mohadjer et al.(2007) <http://www.asasrms.org/Proceedings/y2007/Files/JSM2007-000559.pdf>, and Erciulescu et al.(2019) <doi:10.1111/rssa.12390>.

r-sae-projection 0.1.3
Propagated dependencies: r-yardstick@1.3.1 r-xgboost@1.7.8.1 r-workflows@1.1.4 r-tune@1.2.1 r-tidymodels@1.2.0 r-themis@1.0.2 r-survey@4.4-2 r-rsample@1.2.1 r-rlang@1.1.4 r-recipes@1.1.0 r-ranger@0.17.0 r-randomforest@4.7-1.2 r-parsnip@1.2.1 r-lightgbm@4.5.0 r-glmnet@4.1-8 r-fselector@0.34 r-dplyr@1.1.4 r-doparallel@1.0.17 r-cli@3.6.3 r-caret@6.0-94 r-bonsai@0.3.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/Alfrzlp/sae.projection
Licenses: Expat
Synopsis: Small Area Estimation Using Model-Assisted Projection Method
Description:

Combines information from two independent surveys using a model-assisted projection method. Designed for survey sampling scenarios where a large sample collects only auxiliary information (Survey 1) and a smaller sample provides data on both variables of interest and auxiliary variables (Survey 2). Implements a working model to generate synthetic values of the variable of interest by fitting the model to Survey 2 data and predicting values for Survey 1 based on its auxiliary variables (Kim & Rao, 2012) <doi:10.1093/biomet/asr063>.

r-saehb-panel-beta 0.1.5
Dependencies: jags@4.3.1
Propagated dependencies: r-stringr@1.5.1 r-rjags@4-16 r-dplyr@1.1.4 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/DianRahmawatiSalis/saeHB.panel.beta
Licenses: GPL 3
Synopsis: Small Area Estimation using HB for Rao Yu Model under Beta Distribution
Description:

Several functions are provided for small area estimation at the area level using the hierarchical bayesian (HB) method with panel data under beta distribution for variable interest. This package also provides a dataset produced by data generation. The rjags package is employed to obtain parameter estimates. Model-based estimators involve the HB estimators, which include the mean and the variation of the mean. For the reference, see Rao and Molina (2015, ISBN: 978-1-118-73578-7).

Page: 12
Total results: 29