This package converts between R and Simple Feature sf
objects, without depending on the Simple Feature library. Conversion functions are available at both the R level, and through Rcpp.
Computing centrographic statistics (central points, standard distance, standard deviation ellipse, standard deviation box) for observations taken at point locations in 2D or 3D. The sfcentral library was inspired in aspace package but conceived to be used in a spatial tidyverse context.
Helpers for addressing the issue of disconnected spatial units. It allows for convenient adding and removal of neighbourhood connectivity between areal units prior to modelling, with the visual aid of maps. Post-modelling, it reduces the human workload for extracting, tidying and mapping predictions from areal models.
Identify and understand clusters of points (typically representing the locations of places or events) stored in simple-features (SF) objects. This is useful for analysing, for example, hot-spots of crime events. The package emphasises producing results from point SF data in a single step using reasonable default values for all other arguments, to aid rapid data analysis by users who are starting out. Functions available include kernel density estimation (for details, see Yip (2020) <doi:10.22224/gistbok/2020.1.12>), analysis of spatial association (Getis and Ord (1992) <doi:10.1111/j.1538-4632.1992.tb00261.x>) and hot-spot classification (Chainey (2020) ISBN:158948584X).
This package provides a tidy approach to spatial network analysis, in the form of classes and functions that enable a seamless interaction between the network analysis package tidygraph and the spatial analysis package sf'.