This package provides a collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in spdep
.
spacefillr
enables generation of random and quasi-random space-filling sequences. It supports the following sequences: Halton, Sobol, Owen-scrambled Sobol, Owen-scrambled Sobol with errors distributed as blue noise, progressive jittered, progressive multi-jittered (PMJ), PMJ with blue noise, PMJ02, and PMJ02 with blue noise. The package also includes a C++ API.
The SparseArray
package is an infrastructure package that provides an array-like container for efficient in-memory representation of multidimensional sparse data in R. The package defines the SparseArray
virtual class and two concrete subclasses: COO_SparseArray
and SVT_SparseArray
. Each subclass uses its own internal representation of the nonzero multidimensional data, the "COO layout" and the "SVT layout", respectively. SVT_SparseArray
objects mimic as much as possible the behavior of ordinary matrix and array objects in base R. In particular, they suppport most of the "standard matrix and array API" defined in base R and in the matrixStats
package from CRAN.
This package contains all the datasets for the spatstat
package.
This is a subset of the original spatstat package, containing all of the user-level code from spatstat, except for the code for linear networks.
This is a subset of the original spatstat package, containing the user-level code from spatstat which performs geometrical operations, except for the geometry of linear networks.
This package contains utility functions for the spatstat
package which may also be useful for other purposes.
This package implements functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the spatstat family of packages. Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
This is a subset of the spatstat package, containing its functionality for spatial data on a linear network.
This package defines sparse three-dimensional arrays and supports standard operations on them. The package also includes utility functions for matrix calculations that are common in statistics, such as quadratic forms.
This is a package for estimation of one-dimensional probability distributions including kernel density estimation, weighted empirical cumulative distribution functions, Kaplan-Meier and reduced-sample estimators for right-censored data, heat kernels, kernel properties, quantiles and integration.
This package provides tools for the statistical modelling of spatial extremes using max-stable processes, copula or Bayesian hierarchical models. More precisely, this package allows (conditional) simulations from various parametric max-stable models, analysis of the extremal spatial dependence, the fitting of such processes using composite likelihoods or least square (simple max-stable processes only), model checking and selection and prediction.
Online data collection tools like Google Forms often export multiple-response questions with data concatenated in cells. The concat.split
(cSplit) family of functions provided by this package splits such data into separate cells. This package also includes functions to stack groups of columns and to reshape wide data, even when the data are "unbalanced"---something which reshape
(from base R) does not handle, and which melt
and dcast
from reshape2
do not easily handle.
This package provides functionality for random generation of spatial data in the spatstat family of packages. It generates random spatial patterns of points according to many simple rules (complete spatial randomness, Poisson, binomial, random grid, systematic, cell), randomised alteration of patterns (thinning, random shift, jittering), simulated realisations of random point processes (simple sequential inhibition, Matern inhibition models, Matern cluster process, Neyman-Scott cluster processes, log-Gaussian Cox processes, product shot noise cluster processes) and simulation of Gibbs point processes (Metropolis-Hastings birth-death-shift algorithm, alternating Gibbs sampler).
This package implements functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the spatstat
family of packages. Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
This package provides high performance functions for row and column operations on sparse matrices. Currently, the optimizations are limited to data in the column sparse format.
This package defines an S4 class for storing data from spatial -omics experiments. The class extends SingleCellExperiment to support storage and retrieval of additional information from spot-based and molecule-based platforms, including spatial coordinates, images, and image metadata. A specialized constructor function is included for data from the 10x Genomics Visium platform.