_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-spectralclmixed 1.0.2
Propagated dependencies: r-rspectra@0.16-2 r-ggplot2@3.5.2 r-ggally@2.2.1 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SpectralClMixed
Licenses: GPL 2+
Synopsis: Spectral Clustering for Mixed Type Data
Description:

This package performs cluster analysis of mixed-type data using Spectral Clustering, see F. Mbuga and, C. Tortora (2022) <doi:10.3390/stats5010001>.

r-spectralanomaly 0.1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://al-obrien.github.io/spectralAnomaly/
Licenses: Expat
Synopsis: Detect Anomalies Using the Spectral Residual Algorithm
Description:

Apply the spectral residual algorithm to data, such as a time series, to detect anomalies. Anomaly scores can be used to determine outliers based upon a threshold or fed into more sophisticated prediction models. Methods are based upon "Time-Series Anomaly Detection Service at Microsoft", Ren, H., Xu, B., Wang, Y., et al., (2019) <doi:10.48550/arXiv.1906.03821>.

r-specsverification 0.5-3
Propagated dependencies: r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SpecsVerification
Licenses: GPL 2+
Synopsis: Forecast Verification Routines for Ensemble Forecasts of Weather and Climate
Description:

This package provides a collection of forecast verification routines developed for the SPECS FP7 project. The emphasis is on comparative verification of ensemble forecasts of weather and climate.

Page: 12
Total results: 27