We provide a toolbox to estimate the time delay between the brightness time series of gravitationally lensed quasar images via Bayesian and profile likelihood approaches. The model is based on a state-space representation for irregularly observed time series data generated from a latent continuous-time Ornstein-Uhlenbeck process. Our Bayesian method adopts scientifically motivated hyper-prior distributions and a Metropolis-Hastings within Gibbs sampler, producing posterior samples of the model parameters that include the time delay. A profile likelihood of the time delay is a simple approximation to the marginal posterior distribution of the time delay. Both Bayesian and profile likelihood approaches complement each other, producing almost identical results; the Bayesian way is more principled but the profile likelihood is easier to implement. A new functionality is added in version 1.0.9 for estimating the time delay between doubly-lensed light curves observed in two bands. See also Tak et al. (2017) <doi:10.1214/17-AOAS1027>, Tak et al. (2018) <doi:10.1080/10618600.2017.1415911>, Hu and Tak (2020) <arXiv:2005.08049>
.
This package provides functions for data analysis and graphical displays for developmental microarray time course data.
Supplementary Data package for tandem timer methods paper by Barry et al. (2015) including TimerQuant
shiny applications.
Timeout provides a way to auto-terminate a potentially long-running operation if it hasn't finished in a fixed amount of time.
This package implements S4 classes and various tools for financial time series. Basic functions such as scaling and sorting, subsetting, mathematical operations and statistical functions are provided.
Old-time is a package for backwards compatibility with the old time
library. For new projects, the newer time library is recommended.
Timecop provides "time travel" and "time freezing" capabilities, making it easier to test time-dependent code. It provides a unified method to mock Time.now
, Date.today
, and DateTime.now
in a single call.
The Non Timeline is a powerful, reliable and fast modular digital audio timeline arranger. It utilizes JACK for inter-application audio I/O and the NTK GUI toolkit for a fast and lightweight user interface. Non Timeline can be used alone or in concert with Non Mixer and Non Sequencer to form a complete studio.
This package provides efficient routines for manipulation of date-time objects while accounting for time-zones and daylight saving times. The package includes utilities for updating of date-time components (year, month, day etc.), modification of time-zones, rounding of date-times, period addition and subtraction etc. Parts of the CCTZ source code, released under the Apache 2.0 License, are included in this package.
Unleash the power of time-series data visualization with ease using our package. Designed with simplicity in mind, it offers three key features through the shiny package output. The first tab shows time- series charts with forecasts, allowing users to visualize trends and changes effortlessly. The second one displays Averages per country presented in tables with accompanying sparklines, providing a quick and attractive overview of the data. The last tab presents A customizable world map colored based on user-defined variables for any chosen number of countries, offering an advanced visual approach to understanding geographical data distributions. This package operates with just a few simple arguments, enabling users to conduct sophisticated analyses without the need for complex programming skills. Transform your time-series data analysis experience with our user-friendly tool.
Infer constant and stochastic, time-dependent parameters to consider intrinsic stochasticity of a dynamic model and/or to analyze model structure modifications that could reduce model deficits. The concept is based on inferring time-dependent parameters as stochastic processes in the form of Ornstein-Uhlenbeck processes jointly with inferring constant model parameters and parameters of the Ornstein-Uhlenbeck processes. The package also contains functions to sample from and calculate densities of Ornstein-Uhlenbeck processes. References: Tomassini, L., Reichert, P., Kuensch, H.-R. Buser, C., Knutti, R. and Borsuk, M.E. (2009), A smoothing algorithm for estimating stochastic, continuous-time model parameters and its application to a simple climate model, Journal of the Royal Statistical Society: Series C (Applied Statistics) 58, 679-704, <doi:10.1111/j.1467-9876.2009.00678.x> Reichert, P., and Mieleitner, J. (2009), Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters. Water Resources Research, 45, W10402, <doi:10.1029/2009WR007814> Reichert, P., Ammann, L. and Fenicia, F. (2021), Potential and challenges of investigating intrinsic uncertainty of hydrological models with time-dependent, stochastic parameters. Water Resources Research 57(8), e2020WR028311, <doi:10.1029/2020WR028311> Reichert, P. (2022), timedeppar: An R package for inferring stochastic, time-dependent model parameters, in preparation.
Documentation at https://melpa.org/#/timeout
Documentation at https://melpa.org/#/timecop
Small crate that provides CPU time measurement.
Run the supplied function exactly one time (once)
Drop-in replacement for std::time for Wasm in browsers
This library provides fast parsing and formatting utilities for Unix time in Haskell.
This package provides a drop-in replacement for the Times font from Adobe's basic set.
This module provides routines for parsing date string into time values and formatting dates into ASCII strings.
The LOCAL-TIME library is a Common Lisp library for the manipulation of dates and times. It is based almost entirely upon Erik Naggum's paper "The Long Painful History of Time".
Approaches for incorporating time into network analysis. Methods include: construction of time-ordered networks (temporal graphs); shortest-time and shortest-path-length analyses; resource spread calculations; data resampling and rarefaction for null model construction; reduction to time-aggregated networks with variable window sizes; application of common descriptive statistics to these networks; vector clock latencies; and plotting functionalities. The package supports <doi:10.1371/journal.pone.0020298>.
Computes how the correlation between 2 time-series changes over time. To do so, the package follows the method from Choi & Shin (2021) <doi:10.1007/s42952-020-00073-6>. It performs a non-parametric kernel smoothing (using a common bandwidth) of all underlying components required for the computation of a correlation coefficient (i.e., x, y, x^2, y^2, xy). An automatic selection procedure for the bandwidth parameter is implemented. Alternative kernels can be used (Epanechnikov, box and normal). Both Pearson and Spearman correlation coefficients can be estimated and change in correlation over time can be tested.
Documentation at https://melpa.org/#/time-ext
Documentation at https://melpa.org/#/tea-time