Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Statistical tests and test statistics to identify events in a dataset that are dragon kings (DKs). The statistical methods in this package were reviewed in Wheatley & Sornette (2015) <doi:10.2139/ssrn.2645709>.
Interface for Rcpp users to dlib <http://dlib.net> which is a C++ toolkit containing machine learning algorithms and computer vision tools. It is used in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. This package allows R users to use dlib through Rcpp'.
Flexibly convert data between long and wide format using just two functions: reshape_toLong() and reshape_toWide().
All datasets and functions required for the examples and exercises of the book "Data Science for Psychologists" (by Hansjoerg Neth, Konstanz University, 2025, <doi:10.5281/zenodo.7229812>), freely available at <https://bookdown.org/hneth/ds4psy/>. The book and corresponding courses introduce principles and methods of data science to students of psychology and other biological or social sciences. The ds4psy package primarily provides datasets, but also functions for data generation and manipulation (e.g., of text and time data) and graphics that are used in the book and its exercises. All functions included in ds4psy are designed to be explicit and instructive, rather than efficient or elegant.
Summarise patient-level drug utilisation cohorts using data mapped to the Observational Medical Outcomes Partnership (OMOP) common data model. New users and prevalent users cohorts can be generated and their characteristics, indication and drug use summarised.
Data Analysis using Bootstrap-Coupled ESTimation. Estimation statistics is a simple framework that avoids the pitfalls of significance testing. It uses familiar statistical concepts: means, mean differences, and error bars. More importantly, it focuses on the effect size of one's experiment/intervention, as opposed to a false dichotomy engendered by P values. An estimation plot has two key features: 1. It presents all datapoints as a swarmplot, which orders each point to display the underlying distribution. 2. It presents the effect size as a bootstrap 95% confidence interval on a separate but aligned axes. Estimation plots are introduced in Ho et al., Nature Methods 2019, 1548-7105. <doi:10.1038/s41592-019-0470-3>. The free-to-view PDF is located at <https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D>.
This package contains a single function dclust() for divisive hierarchical clustering based on recursive k-means partitioning (k = 2). Useful for clustering large datasets where computation of a n x n distance matrix is not feasible (e.g. n > 10,000 records). For further information see Steinbach, Karypis and Kumar (2000) <http://glaros.dtc.umn.edu/gkhome/fetch/papers/docclusterKDDTMW00.pdf>.
Containing the Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), Detrended Cross-Correlation Coefficient (rhoDCCA), Delta Amplitude Detrended Cross-Correlation Coefficient (DeltarhoDCCA), log amplitude Detrended Fluctuation Analysis (DeltalogDFA), and the Activity Balance Index, it also includes two DFA automatic methods for identifying crossover points and a Deltalog automatic method for identifying reference channels.
This package provides friendly wrappers for creating duckdb'-backed connections to tabular datasets ('csv', parquet, etc) on local or remote file systems. This mimics the behaviour of "open_dataset" in the arrow package, but in addition to S3 file system also generalizes to any list of http URLs.
We provide a comprehensive software to estimate general K-stage DTRs from SMARTs with Q-learning and a variety of outcome-weighted learning methods. Penalizations are allowed for variable selection and model regularization. With the outcome-weighted learning scheme, different loss functions - SVM hinge loss, SVM ramp loss, binomial deviance loss, and L2 loss - are adopted to solve the weighted classification problem at each stage; augmentation in the outcomes is allowed to improve efficiency. The estimated DTR can be easily applied to a new sample for individualized treatment recommendations or DTR evaluation.
Works as a virtual CRAN snapshot for source packages. It automatically downloads and installs tar.gz files with dependencies, all of which were available on a specific day.
Probability mass function, distribution function, quantile function, random generation and parameter estimation for the type I and III discrete Weibull distributions.
Consider ambiguity in probabilistic descriptions by replacing a parametric probabilistic description of uncertainty by a non-parametric set of probability distributions in the form of a Density Ratio Class. This is of particular interest in Bayesian inference. The Density Ratio Class is particularly suited for this purpose as it is invariant under Bayesian inference, marginalization, and propagation through a deterministic model. Here, invariant means that the result of the operation applied to a Density Ratio Class is again a Density Ratio Class. In particular the invariance under Bayesian inference thus enables iterative learning within the same framework of Density Ratio Classes. The use of imprecise probabilities in general, and Density Ratio Classes in particular, lead to intervals of characteristics of probability distributions, such as cumulative distribution functions, quantiles, and means. The package is based on a sample of the distribution proportional to the upper bound of the class. Typically this will be a sample from the posterior in Bayesian inference. Based on such a sample, the package provides functions to calculate lower and upper class boundaries and lower and upper bounds of cumulative distribution functions, and quantiles. Rinderknecht, S.L., Albert, C., Borsuk, M.E., Schuwirth, N., Kuensch, H.R. and Reichert, P. (2014) "The effect of ambiguous prior knowledge on Bayesian model parameter inference and prediction." Environmental Modelling & Software. 62, 300-315, 2014. <doi:10.1016/j.envsoft.2014.08.020>. Sriwastava, A. and Reichert, P. "Robust Bayesian Estimation of Value Function Parameters using Imprecise Priors." Submitted. <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4973574>.
This package provides a library of density, distribution function, quantile function, (bounded) raw moments and random generation for a collection of distributions relevant for the firm size literature. Additionally, the package contains tools to fit these distributions using maximum likelihood and evaluate these distributions based on (i) log-likelihood ratio and (ii) deviations between the empirical and parametrically implied moments of the distributions. We add flexibility by allowing the considered distributions to be combined into piecewise composite or finite mixture distributions, as well as to be used when truncated. See Dewitte (2020) <https://hdl.handle.net/1854/LU-8644700> for a description and application of methods available in this package.
The data consist of a set of variables measured on several groups of individuals. To each group is associated an estimated probability density function. The package provides tools to create or manage such data and functional methods (principal component analysis, multidimensional scaling, cluster analysis, discriminant analysis...) for such probability densities.
Programmatic access to the DuckDuckGo Instant Answer API <https://api.duckduckgo.com/api>.
An implementation of the decimated two-dimensional complex dual-tree wavelet transform as described in Kingsbury (1999) <doi:10.1098/rsta.1999.0447> and Selesnick et al. (2005) <doi:10.1109/MSP.2005.1550194>. Also includes the undecimated version and spectral bias correction described in Nelson et al. (2018) <doi:10.1007/s11222-017-9784-0>. The code is partly based on the dtcwt Python library.
Data sets and sample analyses from Jay L. Devore (2008), "Probability and Statistics for Engineering and the Sciences (7th ed)", Thomson.
Fast distributed/parallel estimation for multinomial logistic regression via Poisson factorization and the gamlr package. For details see: Taddy (2015, AoAS), Distributed Multinomial Regression, <doi:10.48550/arXiv.1311.6139>.
Distributed Online Mean Tests is a powerful tool designed to efficiently process and analyze distributed datasets. It enables users to perform mean tests in an online, distributed manner, making it highly suitable for large-scale data analysis. By leveraging advanced computational techniques, Domean ensures robust and scalable solutions for statistical analysis, particularly in scenarios where data is dispersed across multiple nodes or sources. This package is ideal for researchers and practitioners working with high-dimensional data, providing a flexible and efficient framework for mean testing. The philosophy of Domean is described in Guo G.(2025) <doi:10.1016/j.physa.2024.130308>.
Several functions are provided for dose-response (or concentration-response) characterization from omics data. DRomics is especially dedicated to omics data obtained using a typical dose-response design, favoring a great number of tested doses (or concentrations) rather than a great number of replicates (no need of replicates). DRomics provides functions 1) to check, normalize and or transform data, 2) to select monotonic or biphasic significantly responding items (e.g. probes, metabolites), 3) to choose the best-fit model among a predefined family of monotonic and biphasic models to describe each selected item, 4) to derive a benchmark dose or concentration and a typology of response from each fitted curve. In the available version data are supposed to be single-channel microarray data in log2, RNAseq data in raw counts, or already pretreated continuous omics data (such as metabolomic data) in log scale. In order to link responses across biological levels based on a common method, DRomics also handles apical data as long as they are continuous and follow a normal distribution for each dose or concentration, with a common standard error. For further details see Delignette-Muller et al (2023) <DOI:10.24072/pcjournal.325> and Larras et al (2018) <DOI:10.1021/acs.est.8b04752>.
This package provides vectorised functions for computing p-values of various common discrete statistical tests, as described e.g. in Agresti (2002) <doi:10.1002/0471249688>, including their distributions. Exact and approximate computation methods are provided. For exact p-values, several procedures of determining two-sided p-values are included, which are outlined in more detail in Hirji (2006) <doi:10.1201/9781420036190>.
Dose Titration Algorithm Tuning (DTAT) is a methodologic framework allowing dose individualization to be conceived as a continuous learning process that begins in early-phase clinical trials and continues throughout drug development, on into clinical practice. This package includes code that researchers may use to reproduce or extend key results of the DTAT research programme, plus tools for trialists to design and simulate a 3+3/PC dose-finding study. Please see Norris (2017a) <doi:10.12688/f1000research.10624.3> and Norris (2017c) <doi:10.1101/240846>.
This package provides a set of pricing and expository functions that should be useful in teaching a course on financial derivatives.