Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Composite Kernel Association Test (CKAT) is a flexible and robust kernel machine based approach to jointly test the genetic main effect and gene-treatment interaction effect for a set of single-nucleotide polymorphisms (SNPs) in pharmacogenetics (PGx) assessments embedded within randomized clinical trials.
Downloads USDA National Agricultural Statistics Service (NASS) cropscape data for a specified state. Utilities for fips, abbreviation, and name conversion are also provided. Full functionality requires an internet connection, but data sets can be cached for later off-line use.
It provides functions to bootstrap Credit Curves from market quotes (Credit Default Swap - CDS - spreads) and price Credit Default Swaps - CDS.
Use frequentist and Bayesian methods to estimate parameters from a binary outcome misclassification model. These methods correct for the problem of "label switching" by assuming that the sum of outcome sensitivity and specificity is at least 1. A description of the analysis methods is available in Hochstedler and Wells (2023) <doi:10.48550/arXiv.2303.10215>.
This package provides a common misconception is that the Hochberg procedure comes up with adequate overall type I error control when test statistics are positively correlated. However, unless the test statistics follow some standard distributions, the Hochberg procedure requires a more stringent positive dependence assumption, beyond mere positive correlation, to ensure valid overall type I error control. To fill this gap, we formulate statistical tests grounded in rank correlation coefficients to validate fulfillment of the positive dependence through stochastic ordering (PDS) condition. See Gou, J., Wu, K. and Chen, O. Y. (2024). Rank correlation coefficient based tests on positive dependence through stochastic ordering with application in cancer studies, Technical Report.
The developed function is a comprehensive tool for the analysis of India Meteorological Department (IMD) NetCDF rainfall data. Specifically designed to process high-resolution daily gridded rainfall datasets. It provides four key functions to process IMD NetCDF rainfall data and create rasters for various temporal scales, including annual, seasonal, monthly, and weekly rainfall. For method details see, Malik, A. (2019).<DOI:10.1007/s12517-019-4454-5>. It supports different aggregation methods, such as sum, min, max, mean, and standard deviation. These functions are designed for spatio-temporal analysis of rainfall patterns, trend analysis,geostatistical modeling of rainfall variability, identifying rainfall anomalies and extreme events and can be an input for hydrological and agricultural models.
The vctrs package provides a concept of vector prototype that can be especially useful when deploying models and code. Serialize these object prototypes to JSON so they can be used to check and coerce data in production systems, and deserialize JSON back to the correct object prototypes.
This package provides an array of statistical models common in causal inference such as standardization, IP weighting, propensity matching, outcome regression, and doubly-robust estimators. Estimates of the average treatment effects from each model are given with the standard error and a 95% Wald confidence interval (Hernan, Robins (2020) <https://miguelhernan.org/whatifbook/>).
This package implements the estimation and inference methods for counterfactual analysis described in Chernozhukov, Fernandez-Val and Melly (2013) <DOI:10.3982/ECTA10582> "Inference on Counterfactual Distributions," Econometrica, 81(6). The counterfactual distributions considered are the result of changing either the marginal distribution of covariates related to the outcome variable of interest, or the conditional distribution of the outcome given the covariates. They can be applied to estimate quantile treatment effects and wage decompositions.
One haplotype is a combination of SNP (Single Nucleotide Polymorphisms) within the QTL (Quantitative Trait Loci). clusterhap groups together all individuals of a population with the same haplotype. Each group contains individual with the same allele in each SNP, whether or not missing data. Thus, clusterhap groups individuals, that to be imputed, have a non-zero probability of having the same alleles in the entire sequence of SNP's. Moreover, clusterhap calculates such probability from relative frequencies.
This package implements bound constrained optimal sample size allocation (BCOSSA) framework described in Bulus & Dong (2021) <doi:10.1080/00220973.2019.1636197> for power analysis of multilevel regression discontinuity designs (MRDDs) and multilevel randomized trials (MRTs) with continuous outcomes. Minimum detectable effect size (MDES) and power computations for MRDDs allow polynomial functional form specification for the score variable (with or without interaction with the treatment indicator). See Bulus (2021) <doi:10.1080/19345747.2021.1947425>.
This package implements the high-dimensional changepoint detection method GeomCP and the related mappings used for changepoint detection. These methods view the changepoint problem from a geometrical viewpoint and aim to extract relevant geometrical features in order to detect changepoints. The geomcp() function should be your first point of call. References: Grundy et al. (2020) <doi:10.1007/s11222-020-09940-y>.
Set chunk hooks for R Markdown documents <https://rmarkdown.rstudio.com/>, and improve user experience. For example, change units of figure sizes, benchmark chunks, and number lines on code blocks.
Computes 138 standard climate indices at monthly, seasonal and annual resolution. These indices were selected, based on their direct and significant impacts on target sectors, after a thorough review of the literature in the field of extreme weather events and natural hazards. Overall, the selected indices characterize different aspects of the frequency, intensity and duration of extreme events, and are derived from a broad set of climatic variables, including surface air temperature, precipitation, relative humidity, wind speed, cloudiness, solar radiation, and snow cover. The 138 indices have been classified as follow: Temperature based indices (42), Precipitation based indices (22), Bioclimatic indices (21), Wind-based indices (5), Aridity/ continentality indices (10), Snow-based indices (13), Cloud/radiation based indices (6), Drought indices (8), Fire indices (5), Tourism indices (5).
Given a collection of intervals with integer start and end positions, find recurrently targeted regions and estimate the significance of finding. Randomization is implemented by parallel methods, either using local host machines, or submitting grid engine jobs.
Recalibrate risk scores (predicting binary outcomes) to improve clinical utility of risk score using weighted logistic or constrained logistic recalibration methods. Additionally, produces plots to assess the potential for recalibration to improve the clinical utility of a risk model. Methods are described in detail in Mishra, A. (2019) "Methods for Risk Markers that Incorporate Clinical Utility" <http://hdl.handle.net/1773/44068>.
An implementation of several functions for feature extraction in categorical time series datasets. Specifically, some features related to marginal distributions and serial dependence patterns can be computed. These features can be used to feed clustering and classification algorithms for categorical time series, among others. The package also includes some interesting datasets containing biological sequences. Practitioners from a broad variety of fields could benefit from the general framework provided by ctsfeatures'.
This package contains Coverage Adjusted Standardized Mutual Information ('CASMI')-based functions. CASMI is a fundamental concept of a series of methods. For more information about CASMI and CASMI'-related methods, please refer to the corresponding publications (e.g., a feature selection method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.3390/e21121179>, and a dataset quality measurement method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.1109/ICHI.2019.8904553>) or contact the package author for the latest updates.
In phase I clinical trials, the primary objective is to ascertain the maximum tolerated dose (MTD) corresponding to a specified target toxicity rate. The subsequent phase II trials are designed to examine the potential efficacy of the drug based on the MTD obtained from the phase I trials, with the aim of identifying the optimal biological dose (OBD). The CFO package facilitates the implementation of dose-finding trials by utilizing calibration-free odds type (CFO-type) designs. Specifically, it encompasses the calibration-free odds (CFO) (Jin and Yin (2022) <doi:10.1177/09622802221079353>), randomized CFO (rCFO), precision CFO (pCFO), two-dimensional CFO (2dCFO) (Wang et al. (2023) <doi:10.3389/fonc.2023.1294258>), time-to-event CFO (TITE-CFO) (Jin and Yin (2023) <doi:10.1002/pst.2304>), fractional CFO (fCFO), accumulative CFO (aCFO), TITE-aCFO, and f-aCFO (Fang and Yin (2024) <doi: 10.1002/sim.10127>). It supports phase I/II trials for the CFO design and only phase I trials for the other CFO-type designs. The â CFO package accommodates diverse CFO-type designs, allowing users to tailor the approach based on factors such as dose information inclusion, handling of late-onset toxicity, and the nature of the target drug (single-drug or drug-combination). The functionalities embedded in CFO package include the determination of the dose level for the next cohort, the selection of the MTD for a real trial, and the execution of single or multiple simulations to obtain operating characteristics. Moreover, these functions are equipped with early stopping and dose elimination rules to address safety considerations. Users have the flexibility to choose different distributions, thresholds, and cohort sizes among others for their specific needs. The output of the CFO package can be summary statistics as well as various plots for better visualization. An interactive web application for CFO is available at the provided URL.
This package provides a reliable and efficient tool for cleaning univariate time series data. It implements reliable and efficient procedures for automating the process of cleaning univariate time series data. The package provides integration with already developed and deployed tools for missing value imputation and outlier detection. It also provides a way of visualizing large time-series data in different resolutions.
Fetches the Cornell Lab of Ornithology Open Tree of Life (clootl) tree in a specified taxonomy. Optionally prune it to a given set of study taxa. Provide a recommended citation list for the studies that informed the extracted tree. Tree generated as described in McTavish et al. (2024) <doi:10.1101/2024.05.20.595017>.
Simplifies the execution of command line interface (CLI) tools within isolated and reproducible environments. It enables users to effortlessly manage Conda environments, execute command line tools, handle dependencies, and ensure reproducibility in their data analysis workflows.
Determining the value of Stirling numbers of 1st kind and 2nd kind,references: Bóna,Miklós(2017,ISBN 9789813148840).
This package provides equations commonly used in clinical pharmacokinetics and clinical pharmacology, such as equations for dose individualization, compartmental pharmacokinetics, drug exposure, anthropomorphic calculations, clinical chemistry, and conversion of common clinical parameters. Where possible and relevant, it provides multiple published and peer-reviewed equations within the respective R function.