Frequentist assisted by Bayes (FAB) confidence interval construction. See Adaptive multigroup confidence intervals with constant coverage by Yu and Hoff <DOI:10.1093/biomet/asy009> and Exact adaptive confidence intervals for linear regression coefficients by Hoff and Yu <DOI:10.1214/18-EJS1517>.
This package contains the Gene ontology terms and skeleton for the reduced GO directed acyclic graph (DAG) for the organisms Rat and Mouse. The methods are explicitly discussed in the following article : Manjang et al (2020) <doi:10.1038/s41598-020-73326-3>.
Probability propagation in Bayesian networks, also known as graphical independence networks. Documentation of the package is provided in vignettes included in the package and in the paper by Højsgaard (2012, <doi:10.18637/jss.v046.i10>). See citation("gRain
") for details.
This package provides interactive visualisations for exploratory data analysis of high-dimensional datasets. Includes parallel coordinate plots for exploring large datasets with mostly quantitative features, but also stacked one-dimensional visualisations that more effectively show missingness and complex categorical relationships in smaller datasets.
An interactive git user interface from the R command line. Intuitive tools to make commits, branches, remotes, and diffs an integrated part of R coding. Built on git2r, a system installation of git is not required and has default on-premises remote option.
Analysing time-series accelerometer data to quantify length and intensity of physical activity using hidden Markov models. It also contains the traditional cut-off point method. Witowski V, Foraita R, Pitsiladis Y, Pigeot I, Wirsik N (2014). <doi:10.1371/journal.pone.0114089>.
Correlation coefficients for multivariate data, namely the squared correlation coefficient and the RV coefficient (multivariate generalization of the squared Pearson correlation coefficient). References include Mardia K.V., Kent J.T. and Bibby J.M. (1979). "Multivariate Analysis". ISBN: 978-0124712522. London: Academic Press.
For the purposes of teaching, it is often desirable to show examples of working with messy data and how to clean it. This R package creates messy data from clean, tidy data frames so that students have a clean example to work towards.
The Bayesian hierarchical model named antigen-T cell interaction estimation is to estimate the history of the immune pressure on the evolution of the tumor clones.The model is based on the estimation result from Andrew Roth (2014) <doi:10.1038/nmeth.2883>.
This package provides tools designed to make it easier for users, particularly beginner/intermediate R users to build ordinary least squares regression models. Includes comprehensive regression output, heteroskedasticity tests, collinearity diagnostics, residual diagnostics, measures of influence, model fit assessment and variable selection procedures.
Estimation of the number of colonization events between islands of the same archipelago for a species. It uses rarefaction curves to control for both field and genetic sample sizes as it was described in Coello et al. (2022) <doi:10.1111/jbi.14341>.
Handles and formats author information in scientific writing in R Markdown and Quarto'. plume provides easy-to-use and flexible tools for injecting author metadata in YAML headers as well as generating author and contribution lists (among others) as strings from tabular data.
This package provides functions to calculate Average Sample Numbers (ASN), Average Run Length (ARL1) and value of k, k1 and k2 for quality control charts under repetitive sampling as given in Aslam et al. (2014) (<DOI:10.7232/iems.2014.13.1.101>).
Routines for solving large systems of linear equations and eigenproblems in R. Direct and iterative solvers from the Eigen C++ library are made available. Solvers include Cholesky, LU, QR, and Krylov subspace methods (Conjugate Gradient, BiCGSTAB
). Dense and sparse problems are supported.
This package provides functions for spatial methods based on generalized estimating equations (GEE) and wavelet-revised methods (WRM), functions for scaling by wavelet multiresolution regression (WMRR), conducting multi-model inference, and stepwise model selection. Further, contains functions for spatially corrected model accuracy measures.
Cellular population mapping (CPM) a deconvolution algorithm in which single-cell genomics is required in only one or a few samples, where in other samples of the same tissue, only bulk genomics is measured and the underlying fine resolution cellular heterogeneity is inferred.
Articles in the R Journal were first authored in LaTeX
', which performs admirably for PDF files but is less than ideal for modern online interfaces. The texor package does all the transitional chores and conversions necessary to move to the online versions.
Logging of scripts suitable for clinical trials using Quarto to create nice human readable logs. whirl enables execution of scripts in batch, while simultaneously creating logs for the execution of each script, and providing an overview summary log of the entire batch execution.
Computes robust association measures that do not presuppose linearity. The xi correlation (xicor) is based on cross correlation between ranked increments. The reference for the methods implemented here is Chatterjee, Sourav (2020) <arXiv:1909.10140>
This package includes the Galton peas example.
This package contains a mixture of functions and data sets referred to in the introductory e-book "YaRrr
!: The Pirate's Guide to R". The latest version of the e-book is available for free at <https://bookdown.org/ndphillips/YaRrr/>
.
This package provides a collection of lightweight helper functions (imps) both for interactive use and for inclusion within other packages. These include functions for minimal input assertions, visualising colour palettes, quoting user input, searching rows of a data frame and capturing string tokens.
This package is used for the identification and validation of sequence motifs. It makes use of STAMP for comparing a set of motifs to a given database (e.g. JASPAR). It can also be used to visualize motifs, motif distributions, modules and filter motifs.
Given a protein multiple sequence alignment, it is a daunting task to assess the effects of substitutions along sequence length. The aaSEA package is intended to help researchers to rapidly analyze property changes caused by single, multiple and correlated amino acid substitutions in proteins.
This package provides functions for fitting and plotting SITAR growth curve models. SITAR is a shape- invariant model with a regression B-spline mean curve and subject-specific random effects on both the measurement and age scales.