Interfaces GAMS data (*.gdx) files with data.table's using the GAMS R package gdxrrw'. The gdxrrw package is available on the GAMS wiki: <https://support.gams.com/doku.php?id=gdxrrw:interfacing_gams_and_r>.
This package provides methods for estimating univariate long memory-seasonal/cyclical Gegenbauer time series processes. See for example (2022) <doi:10.1007/s00362-022-01290-3>. Refer to the vignette for details of fitting these processes.
Convert GDP time series data from one unit to another. All common GDP units are included, i.e. current and constant local currency units, US$ via market exchange rates and international dollars via purchasing power parities.
Offers efficient algorithms for fitting regularization paths for lasso or elastic-net penalized regression models with Huber loss, quantile loss or squared loss. Reference: Congrui Yi and Jian Huang (2017) <doi:10.1080/10618600.2016.1256816>.
Exact significance tests for a changepoint in linear or multiple linear regression. Confidence regions with exact coverage probabilities for the changepoint. Based on Knowles, Siegmund and Zhang (1991) <doi:10.1093/biomet/78.1.15>.
The goal of meltr is to provide a fast and friendly way to read non-rectangular data, such as ragged forms of csv (comma-separated values), tsv (tab-separated values), and fwf (fixed-width format) files.
This package provides tools for performing mathematical morphology operations, such as erosion and dilation, on data of arbitrary dimensionality. Can also be used for finding connected components, resampling, filtering, smoothing and other image processing-style operations.
Download Mexican economic census for several years (2004, 2009, 2014 and 2019) and all federal entities. Filter the census data table by municipal data and build a data.frame for all federal entities and several years.
This package implements Multi-Group Sparse Discriminant Analysis proposal of I.Gaynanova, J.Booth and M.Wells (2016), Simultaneous sparse estimation of canonical vectors in the p>>N setting, JASA <doi:10.1080/01621459.2015.1034318>.
SQL like query interface to fetch data from any Jira installation. The data is fetched using Jira REST API, which can be found at the following URL: <https://developer.atlassian.com/cloud/jira/platform/rest/v2>.
Datasets and utility functions enhancing functionality of nlme package. Datasets, functions and scripts are described in book titled Linear Mixed-Effects Models: A Step-by-Step Approach by Galecki and Burzykowski (2013). Package is under development.
This package provides utilities for processing of Oxy-Bisulfite microarray data (e.g. via the Illumina Infinium platform, <http://www.illumina.com>) with tandem arrays, one using conventional bisulfite conversion, the other using oxy-bisulfite conversion.
This package provides functions are available to calibrate designs over a range of posterior and predictive thresholds, to plot the various design options, and to obtain the operating characteristics of optimal accuracy and optimal efficiency designs.
This package implements the Scout method for regression, described in "Covariance-regularized regression and classification for high-dimensional problems", by Witten and Tibshirani (2008), Journal of the Royal Statistical Society, Series B 71(3): 615-636.
An user-friendly framework to preprocess raw item scores of questionnaires into factors or scores and standardize them. Standardization can be made either by their normalization in representative sample, or by import of premade scoring table.
Code for describing and manipulating scuba diving profiles (depth-time curves) and decompression models, for calculating the predictions of decompression models, for calculating maximum no-decompression time and decompression tables, and for performing mixed gas calculations.
Implementation of Time-course Gene Set Analysis (TcGSA
), a method for analyzing longitudinal gene-expression data at the gene set level. Method is detailed in: Hejblum, Skinner & Thiebaut (2015) <doi: 10.1371/journal.pcbi.1004310>.
This package provides a set of tools for managing time-series data, with a particular emphasis on defining various frequency types such as daily and weekly. It also includes functionality for converting data between different frequencies.
Implementation of shiny app to visualize adverse events based on the Common Terminology Criteria for Adverse Events (CTCAE) using stacked correspondence analysis as described in Diniz et. al (2021)<doi:10.1186/s12874-021-01368-w>.
Identifies differentially abundant populations between samples and groups in mass cytometry data. Provides methods for counting cells into hyperspheres, controlling the spatial false discovery rate, and visualizing changes in abundance in the high-dimensional marker space.
Peak calling for ChIP-seq
data with consideration of potential GC bias in sequencing reads. GC bias is first estimated with generalized linear mixture models using effective GC strategy, then applied into peak significance estimation.
This package offers an interface to NDEx servers, e.g. the public server at http://ndexbio.org/. It can retrieve and save networks via the API. Networks are offered as RCX object and as igraph representation.
Identify Surface Protein coding genes from a list of candidates. Systematically download data from GEO and TCGA or use your own data. Perform DGE on bulk RNAseq data. Perform Meta-analysis. Descriptive enrichment analysis and plots.
The goal of anpan is to consolidate statistical methods for strain analysis. This includes automated filtering of metagenomic functional profiles, testing genetic elements for association with outcomes, phylogenetic association testing, and pathway-level random effects models.