This package contains the normalizing and variance stabilizing Data-Driven Haar-Fisz algorithm. Also contains related algorithms for simulating from certain microarray gene intensity models and evaluation of certain transformations. Contains cDNA
and shipping credit flow data.
Computing Global Sensitivity Indices from given data using Optimal Transport, as defined in Borgonovo et al (2024) <doi:10.1287/mnsc.2023.01796>. You provide an input sample, an output sample, decide the algorithm, and compute the indices.
Analysis of multivariate data using generalized linear latent variable models (gllvm). Estimation is performed using either the Laplace method, variational approximations, or extended variational approximations, implemented via TMB (Kristensen et al. (2016), <doi:10.18637/jss.v070.i05>).
Giac <https://www-fourier.ujf-grenoble.fr/~parisse/giac/doc/en/cascmd_en/cascmd_en.html> is a general purpose symbolic algebra software. It powers the graphical interface Xcas'. This package allows to execute Giac commands in R'.
Adjust Estimates of Learning for Guessing. The package provides standard guessing correction, and a latent class model that leverages informative pre-post transitions. For details of the latent class model, see <http://gsood.com/research/papers/guess.pdf>.
Ridge regression provide biased estimators of the regression parameters with lower variance. The HDBRR ("High Dimensional Bayesian Ridge Regression") function fits Bayesian Ridge regression without MCMC, this one uses the SVD or QR decomposition for the posterior computation.
Several procedures for the hierarchical kernel extreme value process of Reich and Shaby (2012) <DOI:10.1214/12-AOAS591>, including simulation, estimation and spatial extrapolation. The spatial latent variable model <DOI:10.1214/11-STS376> is also included.
Implementation for kernel functional partial least squares (KFPLS) method. KFPLS method is developed for functional nonlinear models, and the method does not require strict constraints for the nonlinear structures. The crucial function of this package is KFPLS()
.
Framework for adding authentication to shiny applications. Provides flexibility as compared to other options for where user credentials are saved, allows users to create their own accounts, and password reset functionality. Bryer (2024) <doi:10.5281/zenodo.10987876>.
Maximum likelihood Gaussian process modeling for univariate and multi-dimensional outputs with diagnostic plots following Santner et al (2003) <doi:10.1007/978-1-4757-3799-8>. Contact the maintainer for a package version that includes sensitivity analysis.
This package contains methods described by Dennis Helsel in his book "Statistics for Censored Environmental Data using Minitab and R" (2011) and courses and videos at <https://practicalstats.com>. This package adds new functions to the `NADA` Package.
Estimation of relatively complex nonlinear mixed-effects models, including the Sigmoidal Mixed Model and the Piecewise Linear Mixed Model with abrupt or smooth transition, through a single intuitive line of code and with automated generation of starting values.
This package provides tools for 4D nucleome imaging. Quantitative analysis of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy. See Volker J. Schmid, Marion Cremer, Thomas Cremer (2017) <doi:10.1016/j.ymeth.2017.03.013>.
Fits the Piecewise Exponential distribution with random time grids using the clustering structure of the Product Partition Models. Details of the implemented model can be found in Demarqui et al. (2008) <doi:10.1007/s10985-008-9086-0>.
Perform flexible and quick calculations for Demand and Supply Planning, such as projected inventories and coverages, as well as replenishment plan. For any time bucket, daily, weekly or monthly, and any granularity level, product or group of products.
To calculate the standard error of measurement (SEM) to assess the observer variability (inter- and intra-observer variation). The methods used in this package are referenced from Zoran B. PopoviÄ (2017) <doi:10.21037/cdt.2017.03.12>.
Computes clustering by fitting Gaussian mixture models (GMM) via stochastic approximation following the methods of Nguyen and Jones (2018) <doi:10.1201/9780429446177>. It also provides some test data generation and plotting functionality to assist with this process.
This package provides a collection of utility functions that facilitate looking up vector values from a lookup table, annotate values in at table for clearer viewing, and support a safer approach to vector sampling, sequence generation, and aggregation.
CNViz takes probe, gene, and segment-level log2 copy number ratios and launches a Shiny app to visualize your sample's copy number profile. You can also integrate loss of heterozygosity (LOH) and single nucleotide variant (SNV) data.
BioQC performs quality control of high-throughput expression data based on tissue gene signatures. It can detect tissue heterogeneity in gene expression data. The core algorithm is a Wilcoxon-Mann-Whitney test that is optimised for high performance.
This package implements a variety of low-level analyses of single-cell RNA-seq data. Methods are provided for normalization of cell-specific biases, assignment of cell cycle phase, and detection of highly variable and significantly correlated genes.
This package provides a method to sample cells from single-cell data. It also generates an aggregate profile on a pruned K-Nearest Neighbor graph. This approach leads to an improved gene expression profile for quantifying gene regulations.
This package is a data visualization package for R providing an implementation of an interactive grammar of graphics, taking the best parts of ggplot2, combining them with the reactive framework of Shiny and drawing web graphics using Vega.
This is a package to compare sequence fragment lengths or molecular weights from pairs of lanes. The number of matching bands in the Restriction Fragment Length Polymorphism (RFLP) data is calculated using the align-and-count method.