An user-friendly framework to preprocess raw item scores of questionnaires into factors or scores and standardize them. Standardization can be made either by their normalization in representative sample, or by import of premade scoring table.
Code for describing and manipulating scuba diving profiles (depth-time curves) and decompression models, for calculating the predictions of decompression models, for calculating maximum no-decompression time and decompression tables, and for performing mixed gas calculations.
This package implements the structural forest methodology for the heterogeneous newsvendor model. The package provides tools to prepare data, fit honest newsvendor trees and forests, and obtain point and distributional predictions for demand decisions under uncertainty.
This package provides a set of tools for managing time-series data, with a particular emphasis on defining various frequency types such as daily and weekly. It also includes functionality for converting data between different frequencies.
Implementation of Time-course Gene Set Analysis (TcGSA), a method for analyzing longitudinal gene-expression data at the gene set level. Method is detailed in: Hejblum, Skinner & Thiebaut (2015) <doi: 10.1371/journal.pcbi.1004310>.
Implementation of shiny app to visualize adverse events based on the Common Terminology Criteria for Adverse Events (CTCAE) using stacked correspondence analysis as described in Diniz et. al (2021)<doi:10.1186/s12874-021-01368-w>.
Ristate provides a river status client. This client is useful if you want to have a module for somethig like eww or waybar with status information like the window title, the focused tag and the tag of views.
dwm is a dynamic window manager for X. It manages windows in tiled, monocle and floating layouts. All of the layouts can be applied dynamically, optimising the environment for the application in use and the task performed.
The package allows one to compose general HTTP requests and provides convenient functions to fetch URIs, GET and POST forms, etc. and process the results returned by the Web server. This provides a great deal of control over the HTTP/FTP/... connection and the form of the request while providing a higher-level interface than is available just using R socket connections. Additionally, the underlying implementation is robust and extensive, supporting FTP/FTPS/TFTP (uploads and downloads), SSL/HTTPS, telnet, dict, ldap, and also supports cookies, redirects, authentication, etc.
This package provides functions to calculate several ecological indices of individual and population niche width (Araujo's E, clustering and pairwise similarity among individuals, IS, Petraitis W, and Roughgarden's WIC/TNW) to assess individual specialization based on data of resource use. Resource use can be quantified by counts of categories, measures of mass or length, or proportions. Monte Carlo resampling procedures are available for hypothesis testing against multinomial null models. Details are provided in Zaccarelli et al. (2013) <doi:10.1111/2041-210X.12079> and associated references.
This package implements a variety of low-level analyses of single-cell RNA-seq data. Methods are provided for normalization of cell-specific biases, assignment of cell cycle phase, and detection of highly variable and significantly correlated genes.
BioQC performs quality control of high-throughput expression data based on tissue gene signatures. It can detect tissue heterogeneity in gene expression data. The core algorithm is a Wilcoxon-Mann-Whitney test that is optimised for high performance.
This package provides a method to sample cells from single-cell data. It also generates an aggregate profile on a pruned K-Nearest Neighbor graph. This approach leads to an improved gene expression profile for quantifying gene regulations.
This package is a data visualization package for R providing an implementation of an interactive grammar of graphics, taking the best parts of ggplot2, combining them with the reactive framework of Shiny and drawing web graphics using Vega.
This is a package for reading, manipulating, writing and plotting spatiotemporal arrays (raster and vector data cubes) in R, using GDAL bindings provided by sf, and NetCDF bindings by ncmeta and RNetCDF.
This package creates and manages simple key-value stores. These can use a variety of approaches for storing the data. This package implements the base methods and support for file system, in-memory and DBI-based database stores.
This package provides a means to mock a package function, i.e., temporarily substitute it for testing. It was designed as a drop-in replacement for the now deprecated testthat::with_mock() and testthat::local_mock().
This is a package to compare sequence fragment lengths or molecular weights from pairs of lanes. The number of matching bands in the Restriction Fragment Length Polymorphism (RFLP) data is calculated using the align-and-count method.
This explorative ordination method combines quasi-likelihood estimation, compositional regression models and latent variable models for integrative visualization of several omics datasets. Both unconstrained and constrained integration are available. The results are shown as interpretable, compositional multiplots.
Enrichment of metabolomics data using KEGG entries. Given a set of affected compounds, FELLA suggests affected reactions, enzymes, modules and pathways using label propagation in a knowledge model network. The resulting subnetwork can be visualised and exported.
It searches for relevant associations of transcription factors with a transcription factor target, in specific genomic regions. It also allows to evaluate the Importance Index distribution of transcription factors (and combinations of transcription factors) in association rules.
This package provides bias-corrected estimates for the regression coefficients of a marginal model estimated with generalized estimating equations. Details about the bias formula used are in Lunardon, N., Scharfstein, D. (2017) <doi:10.1002/sim.7366>.
This package provides access to a range of functions for analyzing, applying and visualizing Bayesian response-adaptive trial designs for a binary endpoint. Includes the predictive probability approach and the predictive evidence value designs for binary endpoints.
This package provides a Bayesian variable selection approach using continuous spike and slab prior distributions. The prior choices here are motivated by the shrinking and diffusing priors studied in Narisetty & He (2014) <DOI:10.1214/14-AOS1207>.