Framework for adding authentication to shiny applications. Provides flexibility as compared to other options for where user credentials are saved, allows users to create their own accounts, and password reset functionality. Bryer (2024) <doi:10.5281/zenodo.10987876>.
Maximum likelihood Gaussian process modeling for univariate and multi-dimensional outputs with diagnostic plots following Santner et al (2003) <doi:10.1007/978-1-4757-3799-8>. Contact the maintainer for a package version that includes sensitivity analysis.
Estimation of relatively complex nonlinear mixed-effects models, including the Sigmoidal Mixed Model and the Piecewise Linear Mixed Model with abrupt or smooth transition, through a single intuitive line of code and with automated generation of starting values.
This package provides tools for 4D nucleome imaging. Quantitative analysis of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy. See Volker J. Schmid, Marion Cremer, Thomas Cremer (2017) <doi:10.1016/j.ymeth.2017.03.013>.
This package contains methods described by Dennis Helsel in his book "Statistics for Censored Environmental Data using Minitab and R" (2011) and courses and videos at <https://practicalstats.com>. This package adds new functions to the `NADA` Package.
Perform flexible and quick calculations for Demand and Supply Planning, such as projected inventories and coverages, as well as replenishment plan. For any time bucket, daily, weekly or monthly, and any granularity level, product or group of products.
Fits the Piecewise Exponential distribution with random time grids using the clustering structure of the Product Partition Models. Details of the implemented model can be found in Demarqui et al. (2008) <doi:10.1007/s10985-008-9086-0>.
To calculate the standard error of measurement (SEM) to assess the observer variability (inter- and intra-observer variation). The methods used in this package are referenced from Zoran B. PopoviÄ (2017) <doi:10.21037/cdt.2017.03.12>.
Computes clustering by fitting Gaussian mixture models (GMM) via stochastic approximation following the methods of Nguyen and Jones (2018) <doi:10.1201/9780429446177>. It also provides some test data generation and plotting functionality to assist with this process.
This package provides a collection of utility functions that facilitate looking up vector values from a lookup table, annotate values in at table for clearer viewing, and support a safer approach to vector sampling, sequence generation, and aggregation.
CNViz takes probe, gene, and segment-level log2 copy number ratios and launches a Shiny app to visualize your sample's copy number profile. You can also integrate loss of heterozygosity (LOH) and single nucleotide variant (SNV) data.
This package implements a variety of low-level analyses of single-cell RNA-seq data. Methods are provided for normalization of cell-specific biases, assignment of cell cycle phase, and detection of highly variable and significantly correlated genes.
BioQC performs quality control of high-throughput expression data based on tissue gene signatures. It can detect tissue heterogeneity in gene expression data. The core algorithm is a Wilcoxon-Mann-Whitney test that is optimised for high performance.
This package provides a method to sample cells from single-cell data. It also generates an aggregate profile on a pruned K-Nearest Neighbor graph. This approach leads to an improved gene expression profile for quantifying gene regulations.
This package is a data visualization package for R providing an implementation of an interactive grammar of graphics, taking the best parts of ggplot2, combining them with the reactive framework of Shiny and drawing web graphics using Vega.
This package creates and manages simple key-value stores. These can use a variety of approaches for storing the data. This package implements the base methods and support for file system, in-memory and DBI-based database stores.
This package provides a means to mock a package function, i.e., temporarily substitute it for testing. It was designed as a drop-in replacement for the now deprecated testthat::with_mock()
and testthat::local_mock()
.
This is a package for reading, manipulating, writing and plotting spatiotemporal arrays (raster and vector data cubes) in R
, using GDAL
bindings provided by sf
, and NetCDF
bindings by ncmeta
and RNetCDF
.
This is a package to compare sequence fragment lengths or molecular weights from pairs of lanes. The number of matching bands in the Restriction Fragment Length Polymorphism (RFLP) data is calculated using the align-and-count method.
This package provides functions to calculate several ecological indices of individual and population niche width (Araujo's E, clustering and pairwise similarity among individuals, IS, Petraitis W, and Roughgarden's WIC/TNW) to assess individual specialization based on data of resource use. Resource use can be quantified by counts of categories, measures of mass or length, or proportions. Monte Carlo resampling procedures are available for hypothesis testing against multinomial null models. Details are provided in Zaccarelli et al. (2013) <doi:10.1111/2041-210X.12079> and associated references.
This package contains functions useful for reading in Licor 6800 files, correcting and analyzing rapid A/Ci response (RACiR
) data. Requires some user interaction to adjust the calibration (empty chamber) data file to a useable range. Calibration uses a 1st to 5th order polynomial as suggested in Stinziano et al. (2017) <doi:10.1111/pce.12911>. Data can be processed individually or batch processed for all files paired with a given calibration file. RACiR
is a trademark of LI-COR Biosciences, and used with permission.
The package allows one to compose general HTTP requests and provides convenient functions to fetch URIs, GET and POST forms, etc. and process the results returned by the Web server. This provides a great deal of control over the HTTP/FTP/... connection and the form of the request while providing a higher-level interface than is available just using R socket connections. Additionally, the underlying implementation is robust and extensive, supporting FTP/FTPS/TFTP (uploads and downloads), SSL/HTTPS, telnet, dict, ldap, and also supports cookies, redirects, authentication, etc.
Bayesian model and associated tools for generating estimates of total naloxone kit numbers distributed and used from naloxone kit orders data. Provides functions for generating simulated data of naloxone kit use and functions for generating samples from the posterior.
Bias- and Uncertainty-Corrected Sample Size. BUCSS implements a method of correcting for publication bias and uncertainty when planning sample sizes in a future study from an original study. See Anderson, Kelley, & Maxwell (2017; Psychological Science, 28, 1547-1562).