Running and comparing meta-analyses of data with hierarchical Bayesian models in Stan, including convenience functions for formatting data, plotting and pooling measures specific to meta-analysis. This implements many models from Meager (2019) <doi:10.1257/app.20170299>.
CemCO
algorithm, a model-based (Gaussian) clustering algorithm that removes/minimizes the effects of undesirable covariates during the clustering process both in cluster centroids and in cluster covariance structures (Relvas C. & Fujita A., (2020) <arXiv:2004.02333>
).
To calculate the sensitivity and specificity in the absence of gold standard using the Bayesian method. The Bayesian method can be referenced at Haiyan Gu and Qiguang Chen (1999) <doi:10.3969/j.issn.1002-3674.1999.04.004>.
Efficiently create dummies of all factors and character vectors in a data frame. Support is included for learning the categories on one data set (e.g., a training set) and deploying them on another (e.g., a test set).
Exploratory and descriptive analysis of event based data. Provides methods for describing and selecting process data, and for preparing event log data for process mining. Builds on the S3-class for event logs implemented in the package bupaR
'.
This package provides a Humanitarian Data Exchange (HDX) theme, color palettes, and scales for ggplot2 to allow users to easily follow the HDX visual design guide, including convenience functions for for loading and using the Source Sans 3 font.
Generalization of supervised principal component regression (SPCR; Bair et al., 2006, <doi:10.1198/016214505000000628>) to support continuous, binary, and discrete variables as outcomes and predictors (inspired by the superpc R package <https://cran.r-project.org/package=superpc>).
Easy access to official spatial data sets of Brazil as sf objects in R. The package includes a wide range of geospatial data available at various geographic scales and for various years with harmonized attributes, projection and fixed topology.
This package provides methods to Get Water Attributes Visually in R ('gwavr'). This allows the user to point and click on areas within the United States and get back hydrological data, e.g. flowlines, catchments, basin boundaries, comids, etc.
The method focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms in a regularized regression model. For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.
Generalized Odds Rate Hazards (GORH) model is a flexible model of fitting survival data, including the Proportional Hazards (PH) model and the Proportional Odds (PO) Model as special cases. This package fit the GORH model with interval censored data.
Dati, scripts e funzioni per il libro "Ricerca sociale con R. Concetti e funzioni base per la ricerca sociale" (Datasets, scripts and functions to support the book "Ricerca sociale con R. Concetti e funzioni base per la ricerca sociale").
The 1001 time series from the M-competition (Makridakis et al. 1982) <DOI:10.1002/for.3980010202> and the 3003 time series from the IJF-M3 competition (Makridakis and Hibon, 2000) <DOI:10.1016/S0169-2070(00)00057-1>.
Two functions for simulating the solution of initial value problems of the form g'(x) = G(x, g) with g(x0) = g0. One is an acceptance-rejection method. The other is a method based on the Mean Value Theorem.
This package provides a lavaan'-like syntax for OpenMx
models. The syntax supports definition variables, bounds, and parameter transformations. This allows for latent growth curve models with person-specific measurement occasions, moderated nonlinear factor analysis and much more.
Estimates rates for continuous character evolution under Brownian motion and a new set of Ornstein-Uhlenbeck based Hansen models that allow both the strength of the pull and stochastic motion to vary across selective regimes. Beaulieu et al (2012).
Evaluates the strength of a surrogate marker by estimating the proportion of treatment effect explained (PTE) and relative power(RP) for the optimally-transformed version of the surrogate. Details available in Wang et al (2022) <arXiv:2209.08414>
.
This package provides a collection of tools to facilitate standardized analysis and graphical procedures when using the National Cancer Instituteâ s Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) and other PRO measurements.
Automatic estimation of number of principal components in PCA with PEnalized SEmi-integrated Likelihood (PESEL). See Piotr Sobczyk, Malgorzata Bogdan, Julie Josse "Bayesian dimensionality reduction with PCA using penalized semi-integrated likelihood" (2017) <doi:10.1080/10618600.2017.1340302>.
Allows users to access the Oregon State Prism climate data (<https://prism.nacse.org/>). Using the web service API data can easily downloaded in bulk and loaded into R for spatial analysis. Some user friendly visualizations are also provided.
Measures memory and CPU usage of R code by regularly taking snapshots of calls to the system command ps'. The package provides an entry point (albeit coarse) to profile usage of system resources by R code run in parallel.
Calculates constant structure parameters of endocrine homeostatic systems from equilibrium hormone concentrations. Methods and equations have been described in Dietrich et al. (2012) <doi:10.1155/2012/351864> and Dietrich et al. (2016) <doi:10.3389/fendo.2016.00057>.
This package provides functions to estimate kernel-smoothed spatial and spatio-temporal densities and relative risk functions, and perform subsequent inference. Methodological details can be found in the accompanying tutorial: Davies et al. (2018) <DOI:10.1002/sim.7577>.
Accompanies the texts Time Series for Data Science with R by Woodward, Sadler and Robertson & Applied Time Series Analysis with R, 2nd edition by Woodward, Gray, and Elliott. It is helpful for data analysis and for time series instruction.