RStudio is an integrated development environment (IDE) for the R programming language. Some of its features include: Customizable workbench with all of the tools required to work with R in one place (console, source, plots, workspace, help, history, etc.); syntax highlighting editor with code completion; execute code directly from the source editor (line, selection, or file); full support for authoring Sweave and TeX documents. RStudio can also be run as a server, enabling multiple users to access the RStudio IDE using a web browser.
GNU Emacs is an extensible and highly customizable text editor. It is based on an Emacs Lisp interpreter with extensions for text editing. Emacs has been extended in essentially all areas of computing, giving rise to a vast array of packages supporting, e.g., email, IRC and XMPP messaging, spreadsheets, remote server editing, and much more. Emacs includes extensive documentation on all aspects of the system, from basic editing to writing large Lisp programs. It has full Unicode support for nearly all human languages.
This package extends the fitdistr function of the MASS package with several functions to help the fit of a parametric distribution to non-censored or censored data. Censored data may contain left-censored, right-censored and interval-censored values, with several lower and upper bounds. In addition to maximum likelihood estimation (MLE), the package provides moment matching (MME), quantile matching (QME) and maximum goodness-of-fit estimation (MGE) methods (available only for non-censored data). Weighted versions of MLE, MME and QME are available.
PhyloProfile is a tool for exploring complex phylogenetic profiles. Phylogenetic profiles, presence/absence patterns of genes over a set of species, are commonly used to trace the functional and evolutionary history of genes across species and time. With PhyloProfile we can enrich regular phylogenetic profiles with further data like sequence/structure similarity, to make phylogenetic profiling more meaningful. Besides the interactive visualisation powered by R-Shiny, the package offers a set of further analysis features to gain insights like the gene age estimation or core gene identification.
The package lets you change page layout parameters in small steps over a range of values using options. It can set \textwidth appropriately for the main fount, and ensure that the text fits inside the printable area of a printer. An rmpage-formatted document can be typeset identically without rmpage after a single cut and paste operation. Local configuration can set defaults: for all documents; and by class, by printer, and by paper size. The geometry package is better if you want to set page layout parameters to particular measurements.
OpenFabrics Interfaces (OFI) is a framework focused on exporting fabric communication services to applications. OFI is best described as a collection of libraries and applications used to export fabric services. The key components of OFI are: application interfaces, provider libraries, kernel services, daemons, and test applications.
Libfabric is a core component of OFI. It is the library that defines and exports the user-space API of OFI, and is typically the only software that applications deal with directly. It works in conjunction with provider libraries, which are often integrated directly into libfabric.
This package provides infrastructure to store and manage all aspects related to a complete proteomics or metabolomics mass spectrometry (MS) experiment. The MsExperiment package provides light-weight and flexible containers for MS experiments building on the new MS infrastructure provided by the Spectra, QFeatures and related packages. Along with raw data representations, links to original data files and sample annotations, additional metadata or annotations can also be stored within the MsExperiment container. To guarantee maximum flexibility only minimal constraints are put on the type and content of the data within the containers.
MSstatsShiny is an R-Shiny graphical user interface (GUI) integrated with the R packages MSstats, MSstatsTMT, and MSstatsPTM. It provides a point and click end-to-end analysis pipeline applicable to a wide variety of experimental designs. These include data-dependedent acquisitions (DDA) which are label-free or tandem mass tag (TMT)-based, as well as DIA, SRM, and PRM acquisitions and those targeting post-translational modifications (PTMs). The application automatically saves users selections and builds an R script that recreates their analysis, supporting reproducible data analysis.
This package provides a package for inferring, comparing, and visualizing gene networks from single-cell RNA sequencing data. It integrates multiple methods (GENIE3, GRNBoost2, ZILGM, PCzinb, and JRF) for robust network inference, supports consensus building across methods or datasets, and provides tools for evaluating regulatory structure and community similarity. GRNBoost2 requires Python package arboreto which can be installed using init_py(install_missing = TRUE). This package includes adapted functions from ZILGM (Park et al., 2021), JRF (Petralia et al., 2015), and learn2count (Nguyen et al. 2023) packages with proper attribution under GPL-2 license.
This is an ExperimentHub package that provides access to the data generated and analyzed in the [smoking-nicotine-mouse](https://github.com/LieberInstitute/smoking-nicotine-mouse/) LIBD project. The datasets contain the expression data of mouse genes, transcripts, exons, and exon-exon junctions across 208 samples from pup and adult mouse brain, and adult blood, that were exposed to nicotine, cigarette smoke, or controls. They also contain relevant metadata of these samples and gene expression features, such QC metrics, if they were used after filtering steps and also if the features were differently expressed in the different experiments.
This package implements an algorithm which increases the number of simultaneously measurable markers and in this way helps with study of the immune responses. Thus, the present algorithm, named CytoBackBone, allows combining phenotypic information of cells from different cytometric profiles obtained from different cytometry panels. This computational approach is based on the principle that each cell has its own phenotypic and functional characteristics that can be used as an identification card. CytoBackBone uses a set of predefined markers, that we call the backbone, to define this identification card. The phenotypic information of cells with similar identification cards in the different cytometric profiles is then merged.
PCG is a family of simple fast space-efficient statistically good algorithms for random number generation. Unlike many general-purpose RNGs, they are also hard to predict. . This library implements bindings to the standard C implementation. This includes the standard, unique, fast and single variants in the pcg family. There is a pure implementation that can be used as a generator with the random package as well as a faster primitive api that includes functions for generating common types. . The generators in this module are suitable for use in parallel but make sure threads don't share the same generator or things will go horribly wrong.
The package provides methods of combining the graph structure learning and generalized least squares regression to improve the regression estimation. The main function sparsenetgls() provides solutions for multivariate regression with Gaussian distributed dependant variables and explanatory variables utlizing multiple well-known graph structure learning approaches to estimating the precision matrix, and uses a penalized variance covariance matrix with a distance tuning parameter of the graph structure in deriving the sandwich estimators in generalized least squares (gls) regression. This package also provides functions for assessing a Gaussian graphical model which uses the penalized approach. It uses Receiver Operative Characteristics curve as a visualization tool in the assessment.
iClusterPlus is developed for integrative clustering analysis of multi-type genomic data and is an enhanced version of iCluster proposed and developed by Shen, Olshen and Ladanyi (2009). Multi-type genomic data arise from the experiments where biological samples (e.g. tumor samples) are analyzed by multiple techniques, for instance, array comparative genomic hybridization (aCGH), gene expression microarray, RNA-seq and DNA-seq, and so on. In the iClusterPlus model, binary observations such as somatic mutation are modeled as Binomial processes; categorical observations such as copy number states are realizations of Multinomial random variables; counts are modeled as Poisson random processes; and continuous measures are modeled by Gaussian distributions.
Annotated HPLC-ESI-MS lipid data in positive ionization mode from an experiment in which cultures of the marine diatom Phaeodactylum tricornutum were treated with various concentrations of hydrogen peroxide (H2O2) to induce oxidative stress. The experiment is described in Graff van Creveld, et al., 2015, "Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms," ISME Journal 9:385-395. PtH2O2lipids consists of two objects: A CAMERA xsAnnotate object (ptH2O2lipids$xsAnnotate) and LOBSTAHS LOBSet object (ptH2O2lipids$xsAnnotate$LOBSet). The LOBSet includes putative compound assignments from the default LOBSTAHS database. Isomer annotation is recorded in three other LOBSet slots.
Multivariate data analysis is the simultaneous observation of more than one characteristic. In contrast to the analysis of univariate data, in this approach not only a single variable or the relation between two variables can be investigated, but the relations between many attributes can be considered. For the statistical analysis of chemical data one has to take into account the special structure of this type of data. This package contains about 30 functions, mostly for regression, classification and model evaluation and includes some data sets used in the R help examples. It was designed as a R companion to the book "Introduction to Multivariate Statistical Analysis in Chemometrics" written by K. Varmuza and P. Filzmoser (2009).
This R package provides a single procedure guix.install(), which allows users to install R packages via Guix right from within their running R session. If the requested R package does not exist in Guix at this time, the package and all its missing dependencies will be imported recursively and the generated package definitions will be written to ~/.Rguix/packages.scm. This record of imported packages can be used later to reproduce the environment, and to add the packages in question to a proper Guix channel (or Guix itself). guix.install() not only supports installing packages from CRAN, but also from Bioconductor or even arbitrary git or mercurial repositories, replacing the need for installation via devtools.
motifcounter provides motif matching, motif counting and motif enrichment functionality based on position frequency matrices. The main features of the packages include the utilization of higher-order background models and accounting for self-overlapping motif matches when determining motif enrichment. The background model allows to capture dinucleotide (or higher-order nucleotide) composition adequately which may reduced model biases and misleading results compared to using simple GC background models. When conducting a motif enrichment analysis based on the motif match count, the package relies on a compound Poisson distribution or alternatively a combinatorial model. These distribution account for self-overlapping motif structures as exemplified by repeat-like or palindromic motifs, and allow to determine the p-value and fold-enrichment for a set of observed motif matches.
The TissueEnrich package is used to calculate enrichment of tissue-specific genes in a set of input genes. For example, the user can input the most highly expressed genes from RNA-Seq data, or gene co-expression modules to determine which tissue-specific genes are enriched in those datasets. Tissue-specific genes were defined by processing RNA-Seq data from the Human Protein Atlas (HPA) (Uhlén et al. 2015), GTEx (Ardlie et al. 2015), and mouse ENCODE (Shen et al. 2012) using the algorithm from the HPA (Uhlén et al. 2015).The hypergeometric test is being used to determine if the tissue-specific genes are enriched among the input genes. Along with tissue-specific gene enrichment, the TissueEnrich package can also be used to define tissue-specific genes from expression datasets provided by the user, which can then be used to calculate tissue-specific gene enrichments.
This package provides several cluster-robust variance estimators (i.e., sandwich estimators) for ordinary and weighted least squares linear regression models, including the bias-reduced linearization estimator introduced by Bell and McCaffrey (2002) http://www.statcan.gc.ca/pub/12-001-x/2002002/article/9058-eng.pdf and developed further by Pustejovsky and Tipton (2017) doi:10.1080/07350015.2016.1247004. The package includes functions for estimating the variance- covariance matrix and for testing single- and multiple-contrast hypotheses based on Wald test statistics. Tests of single regression coefficients use Satterthwaite or saddle-point corrections. Tests of multiple-contrast hypotheses use an approximation to Hotelling's T-squared distribution. Methods are provided for a variety of fitted models, including lm() and mlm objects, glm(), ivreg (from package AER), plm() (from package plm), gls() and lme() (from nlme), robu() (from robumeta), and rma.uni() and rma.mv() (from metafor).
The Single Cell Toolkit (SCTK) in the singleCellTK package provides an interface to popular tools for importing, quality control, analysis, and visualization of single cell RNA-seq data. SCTK allows users to seamlessly integrate tools from various packages at different stages of the analysis workflow. A general "a la carte" workflow gives users the ability access to multiple methods for data importing, calculation of general QC metrics, doublet detection, ambient RNA estimation and removal, filtering, normalization, batch correction or integration, dimensionality reduction, 2-D embedding, clustering, marker detection, differential expression, cell type labeling, pathway analysis, and data exporting. Curated workflows can be used to run Seurat and Celda. Streamlined quality control can be performed on the command line using the SCTK-QC pipeline. Users can analyze their data using commands in the R console or by using an interactive Shiny Graphical User Interface (GUI). Specific analyses or entire workflows can be summarized and shared with comprehensive HTML reports generated by Rmarkdown. Additional documentation and vignettes can be found at camplab.net/sctk.
Minimal embedded v8 engine for Ruby
Minimal embedded v8 engine for Ruby
Minimal embedded v8 engine for Ruby