Accompanies the texts Time Series for Data Science with R by Woodward, Sadler and Robertson & Applied Time Series Analysis with R, 2nd edition by Woodward, Gray, and Elliott. It is helpful for data analysis and for time series instruction.
Our method introduces mathematically well-defined measures for tightness of branches in a hierarchical tree. Statistical significance of the findings is determined, for all branches of the tree, by performing permutation tests, optionally with generalized Pareto p-value estimation.
Video interactivity within shiny applications using video.js'. Enables the status of the video to be sent from the UI to the server, and allows events such as playing and pausing the video to be triggered from the server.
This package provides direct access to linked names for the same entity across the world's major name authority files, including national and regional variations in language, character set, and spelling. For more information go to <https://viaf.org/>.
This package implements detection for the number and locations of the change-points in a time series using the Wild Binary Segmentation and the Locally Stationary Wavelet model of Korkas and Fryzlewicz (2017) <doi:10.5705/ss.202015.0262>.
This package implements a probabilistic approach to time series forecasting combining XGBoost regression with conformal inference methods. The package provides functionality for generating predictive distributions, evaluating uncertainty, and optimizing hyperparameters using Bayesian, coarse-to-fine, or random search strategies.
KEEL is a popular Java software for a large number of different knowledge data discovery tasks. This package takes the advantages of KEEL and R, allowing to use KEEL algorithms in simple R code. The implemented R code layer between R and KEEL makes easy both using KEEL algorithms in R as implementing new algorithms for RKEEL in a very simple way. It includes more than 100 algorithms for classification, regression, preprocess, association rules and imbalance learning, which allows a more complete experimentation process. For more information about KEEL', see <http://www.keel.es/>.
Higher-order spectra or polyspectra of time series, such as bispectrum and bicoherence, have been investigated in abundant literature and applied to problems of signal detection in a wide range of fields. This package aims to provide a simple API to estimate and analyze them. The current implementation is based on Brillinger and Irizarry (1998) <doi:10.1016/S0165-1684(97)00217-X> for estimating bispectrum or bicoherence, Lii and Helland (1981) <doi:10.1145/355958.355961> for cross-bispectrum, and Kim and Powers (1979) <doi:10.1109/TPS.1979.4317207> for cross-bicoherence.
Implementation of the RESTK algorithm based on Markov's Inequality from Vilardell, Sergi, Serra, Isabel, Mezzetti, Enrico, Abella, Jaume, Cazorla, Francisco J. and Del Castillo, J. (2022). "Using Markov's Inequality with Power-Of-k Function for Probabilistic WCET Estimation". In 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Leibniz International Proceedings in Informatics (LIPIcs) 231 20:1-20:24. <doi:10.4230/LIPIcs.ECRTS.2022.20>. This work has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773).
Assesses the robustness of the community structure of a network found by one or more community detection algorithm to give indications about their reliability. It detects if the community structure found by a set of algorithms is statistically significant and compares the different selected detection algorithms on the same network. robin helps to choose among different community detection algorithms the one that better fits the network of interest. Reference in Policastro V., Righelli D., Carissimo A., Cutillo L., De Feis I. (2021) <https://journal.r-project.org/archive/2021/RJ-2021-040/index.html>.
Identification of diferentially methylated regions (DMRs) in predefined regions (promoters, CpG islands...) from the human genome using Illumina's 450K or EPIC microarray data. Provides methods to rank CpG probes based on linear models and includes plotting functions.
The purpose of ncGTW is to help XCMS for LC-MS data alignment. Currently, ncGTW can detect the misaligned feature groups by XCMS, and the user can choose to realign these feature groups by ncGTW or not.
This package is designed to uncover the intrinsic cell progression path from single-cell RNA-seq data. It incorporates data pre-processing, preliminary PCA gene selection, preliminary cell ordering, feature selection, refined cell ordering, and post-analysis interpretation and visualization.
The topGO package provides tools for testing gene ontology (GO) terms while accounting for the topology of the GO graph. Different test statistics and different methods for eliminating local similarities and dependencies between GO terms can be implemented and applied.
This package provides R6 abstract classes for building machine learning models with a scikit-learn like API. Scikit-learn is a popular module for the Python programming language whose design became a de facto standard in industry for machine learning tasks.
This package enables variogram modelling, including: simple, ordinary and universal point or block (co)kriging; spatio-temporal kriging; and sequential Gaussian or indicator (co)simulation. It includes variogram and variogram map plotting utility functions, and supports sf and stars.
This tool generates high number of both single- and multi-objective test functions. These functions are frequently used for the benchmarking of (numerical) optimization algorithms. Moreover, it offers a set of convenient functions to generate, plot and work with objective functions.
The biglm package lets you create a linear model object that uses only codep^2 memory for p variables. It can be updated with more data using update. This allows linear regression on data sets larger than memory.
This package lets you build regression models using the techniques in Friedman's papers "Fast MARS" and "Multivariate Adaptive Regression Splines" <doi:10.1214/aos/1176347963>. The term "MARS" is trademarked and thus not used in the name of the package.
This package provides support for measurement units in R vectors, matrices and arrays: automatic propagation, conversion, derivation and simplification of units; raising errors in case of unit incompatibility. It is compatible with the POSIXct, Date and difftime classes.
Amyloid propensity prediction neural network (APPNN) is an amyloidogenicity propensity predictor based on a machine learning approach through recursive feature selection and feed-forward neural networks, taking advantage of newly published sequences with experimental, in vitro, evidence of amyloid formation.
This package provides a wrapper around the Blat command line SMTP mailer for Windows. Blat is public domain software, but be sure to read the license before use. It can be found at the Blat website http://www.blat.net.
This package performs variable selection and ranking based on several measures for the class of copula survival model(s) in high dimensional domain. The package is based on the class of copula survival model(s) implemented in the GJRM package.
The concept of cause-deleted life expectancy improvement is statistic designed to quantify the increase in life expectancy if a certain cause of death is removed. See Adamic, P. (2015) (<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2689352>).