This package provides functions to handle ordinal relations reflected within the feature space. Those function allow to search for ordinal relations in multi-class datasets. One can check whether proposed relations are reflected in a specific feature representation. Furthermore, it provides functions to filter, organize and further analyze those ordinal relations.
Calculating daily global solar radiation at horizontal surface using several well-known models (i.e. Angstrom-Prescott, Supit-Van Kappel, Hargreaves, Bristow and Campbell, and Mahmood-Hubbard), and model calibration based on ground-truth data, and (3) model auto-calibration. The FAO Penmann-Monteith equation to calculate evapotranspiration is also included.
This package provides functions to calculate EBLUPs (Empirical Best Linear Unbiased Predictor) estimators and their MSEs (Mean Squared Errors). Estimators are based on an area-level linear mixed model introduced by Rao and Yu (1994) <doi:10.2307/3315407>. The REML (Residual Maximum Likelihood) method is used for fitting the model.
This package provides a programmatic interface to many species occurrence data sources, including Global Biodiversity Information Facility ('GBIF'), iNaturalist
', eBird
', Integrated Digitized Biocollections ('iDigBio
'), VertNet
', Ocean Biogeographic Information System ('OBIS'), and Atlas of Living Australia ('ALA'). Includes functionality for retrieving species occurrence data, and combining those data.
The Bank of Canada updated their Valet API <https://www.bankofcanada.ca/valet/docs>, and no R client currently exists. This provides access to all of Valet's endpoints and serves responses in wide format easy for researchers to handle but also provides tools to access API responses as a list.
The Power Law Global Error Model (PLGEM) has been shown to faithfully model the variance-versus-mean dependence that exists in a variety of genome-wide datasets, including microarray and proteomics data. The use of PLGEM has been shown to improve the detection of differentially expressed genes or proteins in these datasets.
The main function of this package is beep()
, with the purpose to make it easy to play notification sounds on whatever platform you are on. It is intended to be useful, for example, if you are running a long analysis in the background and want to know when it is ready.
Placental epigenetic clock to estimate aging based on gestational age using DNA methylation levels, so called placental epigenetic clock (PlEC
). We developed a PlEC
for the 2024 Placental Clock DREAM Challenge (<https://www.synapse.org/Synapse:syn59520082/wiki/628063>). Our PlEC
achieved the top performance based on an independent test set. PlEC
can be used to identify accelerated/decelerated aging of placenta for understanding placental dysfunction-related conditions, e.g., great obstetrical syndromes including preeclampsia, fetal growth restriction, preterm labor, preterm premature rupture of the membranes, late spontaneous abortion, and placental abruption. Detailed methodologies and examples are documented in our vignette, available at <https://herdiantrisufriyana.github.io/rplec/doc/placental_aging_analysis.html>.
Traditional latent variable models assume that the population is homogeneous, meaning that all individuals in the population are assumed to have the same latent structure. However, this assumption is often violated in practice given that individuals may differ in their age, gender, socioeconomic status, and other factors that can affect their latent structure. The robust expectation maximization (REM) algorithm is a statistical method for estimating the parameters of a latent variable model in the presence of population heterogeneity as recommended by Nieser & Cochran (2023) <doi:10.1037/met0000413>. The REM algorithm is based on the expectation-maximization (EM) algorithm, but it allows for the case when all the data are generated by the assumed data generating model.
The base functions for set operations in R
can be used for only two sets. This package RVenn
provides functions for dealing with multiple sets. It uses purr
to find the union, intersection and difference of three or more sets. This package also provides functions for pairwise set operations among several sets. Further, based on ggplot2
and ggforce
, a Venn diagram can be drawn for two or three sets. For bigger data sets, a clustered heatmap showing the presence or absence of the elements of the sets can be drawn based on the pheatmap
package. Finally, enrichment test can be applied to two sets whether an overlap is statistically significant or not.
Iterative least cost path and minimum spanning tree methods for projecting forest road networks. The methods connect a set of target points to an existing road network using igraph <https://igraph.org> to identify least cost routes. The cost of constructing a road segment between adjacent pixels is determined by a user supplied weight raster and a weight function; options include the average of adjacent weight raster values, and a function of the elevation differences between adjacent cells that penalizes steep grades. These road network projection methods are intended for integration into R workflows and modelling frameworks used for forecasting forest change, and can be applied over multiple time-steps without rebuilding a graph at each time-step.
This package provides a method for the Bayesian functional linear regression model (scalar-on-function), including two estimators of the coefficient function and an estimator of its support. A representation of the posterior distribution is also available. Grollemund P-M., Abraham C., Baragatti M., Pudlo P. (2019) <doi:10.1214/18-BA1095>.
An interface to explore, analyze, and visualize droplet digital PCR (ddPCR
) data in R. This is the first non-proprietary software for analyzing two-channel ddPCR
data. An interactive tool was also created and is available online to facilitate this analysis for anyone who is not comfortable with using R.
Fast computation of the distance covariance dcov and distance correlation dcor'. The computation cost is only O(n log(n)) for the distance correlation (see Chaudhuri, Hu (2019) <arXiv:1810.11332>
<doi:10.1016/j.csda.2019.01.016>). The functions are written entirely in C++ to speed up the computation.
Likelihood-based genome polarisation finds which alleles of genomic markers belong to which side of the barrier. Co-estimates which individuals belong to either side of the barrier and barrier strength. Uses expectation maximisation in likelihood framework. The method is described in Baird et al. (2023) <doi:10.1111/2041-210X.14010>.
Predictors can be converted to one or more numeric representations using a variety of methods. Effect encodings using simple generalized linear models <doi:10.48550/arXiv.1611.09477>
or nonlinear models <doi:10.48550/arXiv.1604.06737>
can be used. There are also functions for dimension reduction and other approaches.
An easy-to-use web client/wrapper for the Figma API <https://www.figma.com/developers/api>. It allows you to bring all data from a Figma file to your R session. This includes the data of all objects that you have drawn in this file, and their respective canvas/page metadata.
Improved version of GRIN software that streamlines its use in practice to analyze genomic lesion data, accelerate its computing, and expand its analysis capabilities to answer additional scientific questions including a rigorous evaluation of the association of genomic lesions with RNA expression. Pounds, Stan, et al. (2013) <DOI:10.1093/bioinformatics/btt372>.
Download data from Istat (Italian Institute of Statistics) database, both old and new provider (respectively, <http://dati.istat.it/> and <https://esploradati.istat.it/databrowser/>). Additional functions for manipulating data are provided. Moreover, a shiny application called shinyIstat
can be used to search, download and filter datasets in an easier way.
Set of routines for influence diagnostics by using case-deletion in ordinary least squares, nonlinear regression [Ross (1987). <doi:10.2307/3315198>], ridge estimation [Walker and Birch (1988). <doi:10.1080/00401706.1988.10488370>] and least absolute deviations (LAD) regression [Sun and Wei (2004). <doi:10.1016/j.spl.2003.08.018>].
This package provides a streamlined cross-referencing system for R Markdown documents generated with knitr'. R Markdown is an authoring format for generating dynamic content from R. kfigr provides a hook for anchoring code chunks and a function to cross-reference document elements generated from said chunks, e.g. figures and tables.
Multiple contrast tests and simultaneous confidence intervals based on normal approximation. With implementations for binomial proportions in a 2xk setting (risk difference and odds ratio), poly-3-adjusted tumour rates, biodiversity indices (multinomial data) and expected values under lognormal assumption. Approximative power calculation for multiple contrast tests of binomial and Gaussian data.
Access the Red List of Montane Tree Species of the Tropical Andes Tejedor Garavito et al.(2014, ISBN:978-1-905164-60-8). This package allows users to search for globally threatened tree species within the andean montane forests, including cloud forests and seasonal (wet) forests above 1500 m a.s.l.
Common mass spectrometry tools described in John Roboz (2013) <doi:10.1201/b15436>. It allows checking element isotopes, calculating (isotope labelled) exact monoisitopic mass, m/z values and mass accuracy, and inspecting possible contaminant mass peaks, examining possible adducts in electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) ion sources.