Root Expected Proportion Squared Difference (REPSD) is a nonparametric differential item functioning (DIF) method that (a) allows practitioners to explore for DIF related to small, fine-grained focal groups of examinees, and (b) compares the focal group directly to the composite group that will be used to develop the reported test score scale. Using your provided response matrix with a column that identifies focal group membership, this package provides the REPSD values, a simulated null distribution of possible REPSD values, and the simulated p-values identifying items possibly displaying DIF without requiring enormous sample sizes.
Random variate generation, density, CDF and quantile function for the Argus distribution. Especially, it includes for random variate generation a flexible inversion method that is also fast in the varying parameter case. A Ratio-of-Uniforms method is provided as second alternative.
This package provides alternatives to the normal adjusted R-squared estimator for the estimation of the multiple squared correlation in regression models, as fitted by the lm()
function. The alternative estimators are described in Karch (2020) <DOI:10.1525/collabra.343>.
This package provides functions for Accurate and Speedy linkage map construction, manipulation and diagnosis of Doubled Haploid, Backcross and Recombinant Inbred R/qtl objects. This includes extremely fast linkage map clustering and optimal marker ordering using MSTmap (see Wu et al.,2008).
This package implements z-test, t-test, and normal moment prior Bayes factors based on summary statistics, along with functionality to perform corresponding power and sample size calculations as described in Pawel and Held (2024) <doi:10.48550/arXiv.2406.19940>
.
Facilitates univariate and multivariate analysis of evolutionary sequences of phenotypic change. The package extends the modeling framework available in the paleoTS
package. Please see <https://klvoje.github.io/evoTS/index.html>
for information about the package and the implemented models.
Find all hierarchical models of specified generalized linear model with information criterion (AIC, BIC, or AICc) within specified cutoff of minimum value. Alternatively, find all such graphical models. Use branch and bound algorithm so we do not have to fit all models.
Fitting hidden Markov models of learning under the cognitive diagnosis framework. The estimation of the hidden Markov diagnostic classification model, the first order hidden Markov model, the reduced-reparameterized unified learning model, and the joint learning model for responses and response times.
We provide the collection of data-sets used in the book An Introduction to Statistical Learning with Applications in R, Second Edition'. These include many data-sets that we used in the first edition (some with minor changes), and some new datasets.
Convert irregularly spaced longitudinal data into regular intervals for further analysis, and perform clustering using advanced machine learning techniques. The package is designed for handling complex longitudinal datasets, optimizing them for research in healthcare, demography, and other fields requiring temporal data modeling.
Density, distribution function, quantile function and random generation for the K-distribution. A plotting function that plots data on Weibull paper and another function to draw additional lines. See results from package in T Lamont-Smith (2018), submitted J. R. Stat. Soc.
This package provides a new approach to detect change points based on smoothing and multiple testing, which is for long data sequence modeled as piecewise constant functions plus stationary Gaussian noise, see Dan Cheng and Armin Schwartzman (2015) <arXiv:1504.06384>
.
Estimate coefficient of variance percent (CV%) for any arbitrary distribution, including some built-in estimates for commonly-used transformations in pharmacometrics. Methods are described in various sources, but applied here as summarized in: Prybylski, (2024) <doi:10.1007/s40262-023-01343-2>.
Fits single- and multiple-group penalized factor analysis models via a trust-region algorithm with integrated automatic multiple tuning parameter selection (Geminiani et al., 2021 <doi:10.1007/s11336-021-09751-8>). Available penalties include lasso, adaptive lasso, scad, mcp, and ridge.
Cluster user-supplied somatic read counts with corresponding allele-specific copy number and tumor purity to infer feasible underlying intra-tumor heterogeneity in terms of number of subclones, multiplicity, and allocation (Little et al. (2019) <doi:10.1186/s13073-019-0643-9>).
Hierarchical models for the analysis of species-area relationships (SARs) by combining several data sets and covariates; with a global data set combining individual SAR studies; as described in Solymos and Lele (2012) <doi:10.1111/j.1466-8238.2011.00655.x>.
This package implements S3 classes for storing dates and date-times based on the Jalali calendar. The main design goal of shide is consistency with base R's Date and POSIXct'. It provide features such as: date-time parsing, formatting and arithmetic.
This package provides utilities for conducting specification curve analyses (Simonsohn, Simmons & Nelson (2020, <doi: 10.1038/s41562-020-0912-z>) or multiverse analyses (Steegen, Tuerlinckx, Gelman & Vanpaemel, 2016, <doi: 10.1177/1745691616658637>) including functions to setup, run, evaluate, and plot all specifications.
Implementations self-normalization (SN) based algorithms for change-points estimation in time series data. This comprises nested local-window algorithms for detecting changes in both univariate and multivariate time series developed in Zhao, Jiang and Shao (2022) <doi:10.1111/rssb.12552>.
Calculates and plots the SiZer
map for scatterplot data. A SiZer
map is a way of examining when the p-th derivative of a scatterplot-smoother is significantly negative, possibly zero or significantly positive across a range of smoothing bandwidths.
This package provides a set of functions that allow users for styling their R code according to the tidyverse style guide. The package uses a native Rust implementation to ensure the highest performance. Learn more about tergo at <https://rtergo.pagacz.io>.
Encapsulates the pattern of untidying data into a wide matrix, performing some processing, then turning it back into a tidy form. This is useful for several operations such as co-occurrence counts, correlations, or clustering that are mathematically convenient on wide matrices.
Hierarchical deconvolution for extensive cell type resolution in the human brain using DNA methylation. The HiBED
deconvolution estimates proportions up to 7 cell types (GABAergic neurons, glutamatergic neurons, astrocytes, microglial cells, oligodendrocytes, endothelial cells, and stromal cells) in bulk brain tissues.
This package can be used for the analysis of gene expression studies, especially the use of linear models for analysing designed experiments and the assessment of differential expression. The analysis methods apply to different technologies, including microarrays, RNA-seq, and quantitative PCR.