Automatic time series modelling with neural networks. Allows fully automatic, semi-manual or fully manual specification of networks. For details of the specification methodology see: (i) Crone and Kourentzes (2010) <doi:10.1016/j.neucom.2010.01.017>; and (ii) Kourentzes et al. (2014) <doi:10.1016/j.eswa.2013.12.011>.
QuantLib
bindings are provided for R using Rcpp via an evolved version of the initial header-only Quantuccia project offering an subset of QuantLib
(now maintained separately just for the calendaring subset). See the included file AUTHORS for a full list of contributors to QuantLib
(and hence also Quantuccia').
This package provides a collection of functions for processing raw data from Stream Temperature, Intermittency, and Conductivity (STIC) loggers. STICr (pronounced "sticker") includes functions for tidying, calibrating, classifying, and doing quality checks on data from STIC sensors. Some package functionality is described in Wheeler/Zipper et al. (2023) <doi:10.31223/X5636K>.
Inferring causation from spatial cross-sectional data through empirical dynamic modeling (EDM), with methodological extensions including geographical convergent cross mapping from Gao et al. (2023) <doi:10.1038/s41467-023-41619-6>, as well as the spatial causality test following the approach of Herrera et al. (2016) <doi:10.1111/pirs.12144>.
Procedure to optimally split a dataset for training and testing. SPlit is based on the method of support points, which is independent of modeling methods. Please see Joseph and Vakayil (2021) <doi:10.1080/00401706.2021.1921037> for details. This work is supported by U.S. National Science Foundation grant DMREF-1921873.
Computes Value at risk and expected shortfall, two most popular measures of financial risk, for over one hundred parametric distributions, including all commonly known distributions. Also computed are the corresponding probability density function and cumulative distribution function. See Chan, Nadarajah and Afuecheta (2015) <doi:10.1080/03610918.2014.944658> for more details.
High-level functions to render LaTeX
fragments in plots, including as labels and data symbols in ggplot2 plots, plus low-level functions to author LaTeX
fragments (to produce LaTeX
documents), typeset LaTeX
documents (to produce DVI files), read DVI files (to produce "DVI" objects), and render "DVI" objects.
This package provides functions for reading, writing, plotting, analysing, and manipulating allelic and haplotypic data, including from VCF files, and for the analysis of population nucleotide sequences and micro-satellites including coalescent analyses, linkage disequilibrium, population structure (Fst, Amova) and equilibrium (HWE), haplotype networks, minimum spanning tree and network, and median-joining networks.
Regularised discriminant analysis functions. The classical regularised discriminant analysis proposed by Friedman in 1989, including cross-validation, of which the linear and quadratic discriminant analyses are special cases. Further, the regularised maximum likelihood linear discriminant analysis, including cross-validation. References: Friedman J.H. (1989): "Regularized Discriminant Analysis". Journal of the American Statistical Association 84(405): 165--175. <doi:10.2307/2289860>. Friedman J., Hastie T. and Tibshirani R. (2009). "The elements of statistical learning", 2nd edition. Springer, Berlin. <doi:10.1007/978-0-387-84858-7>. Tsagris M., Preston S. and Wood A.T.A. (2016). "Improved classification for compositional data using the alpha-transformation". Journal of Classification, 33(2): 243--261. <doi:10.1007/s00357-016-9207-5>.
Implementation of Kernelized score functions and other semi-supervised learning algorithms for node label ranking to analyze biomolecular networks. RANKS can be easily applied to a large set of different relevant problems in computational biology, ranging from automatic protein function prediction, to gene disease prioritization and drug repositioning, and more in general to any bioinformatics problem that can be formalized as a node label ranking problem in a graph. The modular nature of the implementation allows to experiment with different score functions and kernels and to easily compare the results with baseline network-based methods such as label propagation and random walk algorithms, as well as to enlarge the algorithmic scheme by adding novel user-defined score functions and kernels.
This package provides a fast and general implementation of the Elston-Stewart algorithm that can calculate the likelihoods of large and complex pedigrees. References for the Elston-Stewart algorithm are Elston & Stewart (1971) <doi:10.1159/000152448>, Lange & Elston (1975) <doi:10.1159/000152714> and Cannings et al. (1978) <doi:10.2307/1426718>.
Eases the use of ecotoxicological effect models. Can simulate common toxicokinetic-toxicodynamic (TK/TD) models such as General Unified Threshold models of Survival (GUTS) and Lemna. It can derive effects and effect profiles (EPx) from scenarios. It supports the use of tidyr workflows employing the pipe symbol. Time-consuming tasks can be parallelized.
Get text from images of text using Captricity Optical Character Recognition (OCR) API. Captricity allows you to get text from handwritten forms --- think surveys --- and other structured paper documents. And it can output data in form a delimited file keeping field information intact. For more information, read <https://shreddr.captricity.com/developer/overview/>.
We provide the main R functions to compute the posterior interval for the noncentrality parameter of the chi-squared distribution. The skewness estimate of the posterior distribution is also available to improve the coverage rate of posterior intervals. Details can be found in Du and Hu (2020) <doi:10.1080/01621459.2020.1777137>.
This package provides a neighborhood-based, greedy search algorithm is performed to estimate a feature allocation by minimizing the expected loss based on posterior samples from the feature allocation distribution. The method is described in Dahl, Johnson, and Andros (2023) "Comparison and Bayesian Estimation of Feature Allocations" <doi:10.1080/10618600.2023.2204136>.
Generate concentration-time profiles from linear pharmacokinetic (PK) systems, possibly with first-order absorption or zero-order infusion, possibly with one or more peripheral compartments, and possibly under steady-state conditions. Single or multiple doses may be specified. Secondary (derived) PK parameters (e.g. Cmax, Ctrough, AUC, Tmax, half-life, etc.) are computed.
Given a postulated model and a set of data, the comparison density is estimated and the deviance test is implemented in order to assess if the data distribution deviates significantly from the postulated model. Finally, the results are summarized in a CD-plot as described in Algeri S. (2019) <arXiv:1906.06615>
.
Compose generic monadic function pipelines with %>>% and %>-% based on implementing the S7 generics fmap()
and bind()
. Methods are provided for the built-in list type and the maybe class from the maybe package. The concepts are modelled directly after the Monad typeclass in Haskell, but adapted for idiomatic use in R.
This package implements a simulation study to assess the strengths and weaknesses of causal inference methods for estimating policy effects using panel data. See Griffin et al. (2021) <doi:10.1007/s10742-022-00284-w> and Griffin et al. (2022) <doi:10.1186/s12874-021-01471-y> for a description of our methods.
Automates and standardizes the import of raw data from Oregon RFID (radio-frequency identification) ORMR (Oregon RFID Multi-Reader) and ORSR (Oregon RFID Single Reader) antenna readers. Compiled data can then be combined within multi-reader arrays for further analysis, including summarizing tag and reader detections, determining tag direction, and calculating antenna efficiency.
Quantile regression with fixed effects is a general model for longitudinal data. Here we proposed to solve it by several methods. The estimation methods include three loss functions as check, asymmetric least square and asymmetric Huber functions; and three structures as simple regression, fixed effects and fixed effects with penalized intercepts by LASSO.
Allows the user to connect with the World Spider Catalogue (WSC; <https://wsc.nmbe.ch/>) and the World Spider Trait (WST; <https://spidertraits.sci.muni.cz/>) databases. Also performs several basic functions such as checking names validity, retrieving coordinate data from the Global Biodiversity Information Facility (GBIF; <https://www.gbif.org/>), and mapping.
This package provides a method to explore the treatment-covariate interactions in survival or generalized linear model (GLM) for continuous, binomial and count data arising from two or more treatment arms of a clinical trial. A permutation distribution approach to inference is implemented, based on permuting the covariate values within each treatment group.
This package provides routines to check identifiability or non-identifiability of linear structural equation models as described in Drton, Foygel, and Sullivant (2011) <doi:10.1214/10-AOS859>, Foygel, Draisma, and Drton (2012) <doi:10.1214/12-AOS1012>, and other works. The routines are based on the graphical representation of structural equation models.