This package implements z-test, t-test, and normal moment prior Bayes factors based on summary statistics, along with functionality to perform corresponding power and sample size calculations as described in Pawel and Held (2025) <doi:10.1080/00031305.2025.2467919>.
Computing, comparing, and demonstrating top informative centrality measures within a network. "CINNA: an R/CRAN package to decipher Central Informative Nodes in Network Analysis" provides a comprehensive overview of the package functionality Ashtiani et al. (2018) <doi:10.1093/bioinformatics/bty819>.
Supports quantitative research in scientometrics and bibliometrics. Provides various tools for preprocessing bibliographic data retrieved, e.g., from Elsevier's Scopus, computing bibliometric impact of individuals, or modelling phenomena encountered in the social sciences. This package is deprecated; see agop instead.
This package provides functions to carry out the most important crystallographic calculations for crystal structures made of 1d Gaussian-shaped atoms, especially useful for methods development. Main reference: E. Smith, G. Evans, J. Foadi (2017) <doi:10.1088/1361-6404/aa8188>.
This package provides functions for interacting with all sections of the official Danish Address Web API (also known as DAWA') <https://api.dataforsyningen.dk>. The development of this package is completely independent from the government agency, Klimadatastyrelsen, who maintains the API.
Environmental seismology is a scientific field that studies the seismic signals, emitted by Earth surface processes. This package provides all relevant functions to read/write seismic data files, prepare, analyse and visualise seismic data, and generate reports of the processing history.
It allows structuring electoral data of different size and structure to calculate various indicators frequently used in the studies of electoral systems and party systems. Indicators of electoral volatility, electoral disproportionality, party nationalization and the effective number of parties are included.
Includes a collection of geographical analysis functions aimed primarily at ecology and conservation science studies, allowing processing of both point and raster data. Now integrates SPECTRE (<https://biodiversityresearch.org/spectre/>), a dataset of global geospatial threat data, developed by the authors.
This package provides functions to support the computations carried out in `An Introduction to Statistical Modeling of Extreme Values by Stuart Coles. The functions may be divided into the following groups; maxima/minima, order statistics, peaks over thresholds and point processes.
Toolkit for Poly-pharmacology Research of Traditional Chinese Medicine. Based on the biological descriptors and drug-disease interaction networks, it can analyze the potential poly-pharmacological mechanisms of Traditional Chinese Medicine and be used for drug-repositioning in Traditional Chinese Medicine.
Implementation of Locally Scaled Density Based Clustering (LSDBC) algorithm proposed by Bicici and Yuret (2007) <doi:10.1007/978-3-540-71618-1_82>. This package also contains some supporting functions such as betaCV() function and get_spectral() function.
This package provides a suite of tools to use the eBird database (<https://ebird.org/home/>) and APIs to compare users species lists to recent observations and create a report of the top sites to visit to see new species.
This package provides functions for different purposes related to forest biometrics, including illustrative graphics, numerical computation, modeling height-diameter relationships, prediction of tree volumes, modelling of diameter distributions and estimation off stand density using ITD. Several empirical datasets are also included.
Implementation based on Zhang, Jie & Huang, Kun (2014) <doi:10.4137/CIN.S14021> Normalized ImQCM: An Algorithm for Detecting Weak Quasi-Cliques in Weighted Graph with Applications in Gene Co-Expression Module Discovery in Cancers. Cancer informatics, 13, CIN-S14021.
Computes mutual information matrices from continuous, categorical and survival variables, as well as feature selection with minimum redundancy, maximum relevance (mRMR) and a new ensemble mRMR technique. Published in De Jay et al. (2013) <doi:10.1093/bioinformatics/btt383>.
This package provides tools for estimating Receiver Operating Characteristic (ROC) curves, building confidence bands, comparing several curves both for dependent and independent data, estimating the cumulative-dynamic ROC curve in presence of censored data, and performing meta-analysis studies, among others.
This package provides functions and datasets to support the book by Galecki and Burzykowski (2013), Linear Mixed-Effects Models: A Step-by-Step Approach', Springer. Includes functions for power calculations, log-likelihood contributions, and data simulation for linear mixed-effects models.
This package creates mock data for testing and package development for the Observational Medical Outcomes Partnership common data model. The package offers functions crafted with pipeline-friendly implementation, enabling users to effortlessly include only the necessary tables for their testing needs.
Bandwidth selector according to the Penalised Comparison to Overfitting (P.C.O.) criterion as described in Varet, S., Lacour, C., Massart, P., Rivoirard, V., (2019) <https://hal.archives-ouvertes.fr/hal-02002275>. It can be used with univariate and multivariate data.
Google Pathways Language Model 2 (PaLM 2) as a coding and writing assistant designed for R'. With a range of functions, including natural language processing and coding optimization, to assist R developers in simplifying tedious coding tasks and content searching.
Tidies up the forecasting modeling and prediction work flow, extends the broom package with sw_tidy', sw_glance', sw_augment', and sw_tidy_decomp functions for various forecasting models, and enables converting forecast objects to "tidy" data frames with sw_sweep'.
Regression inference for multiple populations by integrating summary-level data using stacked imputations. Gu, T., Taylor, J.M.G. and Mukherjee, B. (2021) A synthetic data integration framework to leverage external summary-level information from heterogeneous populations <arXiv:2106.06835>.
This package provides functions for calculating species richness for rarefaction and extrapolation, primarily non-parametric species richness such as jackknife, Chao1, and ACE. Also available are functions for plotting species richness and extrapolation curves, and computing standard diversity and entropy indices.
Omics data (e.g. transcriptomics, proteomics, metagenomics...) offer a detailed and multi-dimensional perspective on the molecular components and interactions within complex biological (eco)systems. Analyzing these data requires adapted procedures, which are implemented as steps according to the recipes package.