The goal of Rigma is to provide a user friendly client to the Figma API <https://www.figma.com/developers/api>. It uses the latest `httr2` for a stable interface with the REST API. More than 20 methods are provided to interact with Figma files, and teams. Get design data into R by reading published components and styles, converting and downloading images, getting access to the full Figma file as a hierarchical data structure, and much more. Enhance your creativity and streamline the application development by automating the extraction, transformation, and loading of design data to your applications and HTML documents.
Biodiversity is in crisis. The overarching aim of conservation is to preserve biodiversity patterns and processes. To this end, protected areas are established to buffer species and preserve biodiversity processes. But resources are limited and so protected areas must be cost-effective. This package contains tools to generate plans for protected areas (prioritizations), using spatially explicit targets for biodiversity patterns and processes. To obtain solutions in a feasible amount of time, this package uses the commercial Gurobi software (obtained from <https://www.gurobi.com/>). For more information on using this package, see Hanson et al. (2018) <doi:10.1111/2041-210X.12862>.
Roswell has now evolved into a full-stack environment for Common Lisp development, and has many features that makes it easy to test, share, and distribute your Lisp applications. With Roswell, we aim to push the Common Lisp community to a whole new level of productivity.
Apache Arrow is a cross-language development platform for in-memory data. It specifies a standardized language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware. This package provides an R interface to the Arrow C++ library.
Project Raincat is a game developed by Carnegie Mellon students through GCS during the Fall 2008 semester. Raincat features game play inspired from classics Lemmings and The Incredible Machine. The project proved to be an excellent learning experience for the programmers. Everything is programmed in Haskell.
"Methylation-Aware Genotype Association in R" (MAGAR) computes methQTL from DNA methylation and genotyping data from matched samples. MAGAR uses a linear modeling stragety to call CpGs/SNPs that are methQTLs. MAGAR accounts for the local correlation structure of CpGs.
This package provides a dependency-free collection of simple functions for cleaning rectangular data. This package allows to detect, count and replace values or discard rows/columns using a predicate function. In addition, it provides tools to check conditions and return informative error messages.
Fork-safe, raw access to the Amazon Web Services ('AWS') SDK via the boto3 Python module, and convenient helper functions to query the Simple Storage Service ('S3') and Key Management Service ('KMS'), partial support for IAM', the Systems Manager Parameter Store and Secrets Manager'.
Computes exact bounds of Spearman's footrule in the presence of missing data, and performs independence test based on the bounds with controlled Type I error regardless of the values of missing data. Suitable only for distinct, univariate data where no ties is allowed.
Calculate the predictive discrete Fourier transform, complete discrete Fourier transform, complete periodogram, and tapered complete periodogram. This algorithm is based on the preprint "Spectral methods for small sample time series: A complete periodogram approach" (2020) by Sourav Das, Suhasini Subba Rao, and Junho Yang.
Function to test spatial segregation and association based in contingency table analysis of nearest neighbour counts following Dixon (2002) <doi:10.1080/11956860.2002.11682700>. Some Fortran code has been included to the original dixon2002() function of the ecespa package to improve speed.
This package provides a `.` object which can be used for unpacking assignments. For example, `.[rows, columns] <- dim(cars)` could be used to pull the number of rows and number of columns from `dim(cars)` into individual variables `rows` and `columns` in a single step.
This package provides a flexible permutation framework for making inference such as point estimation, confidence intervals or hypothesis testing, on any kind of data, be it univariate, multivariate, or more complex such as network-valued data, topological data, functional data or density-valued data.
Parse and create Darwin Core (<http://rs.tdwg.org/dwc/>) Simple and Archives. Functionality includes reading and parsing all the files in a Darwin Core Archive, including the datasets and metadata; read and parse simple Darwin Core files; and validation of Darwin Core Archives.
This package provides functions for importing, creating, editing and exporting FSK files <https://foodrisklabs.bfr.bund.de/fskx-food-safety-knowledge-exchange-format/> using the R programming environment. Furthermore, it enables users to run simulations contained in the FSK files and visualize the results.
This package contains functions to fetch data from various data sources. The user first creates a catalog of objects from a data source, then fetches data from the catalog. The package provides an easy way to access data from many different types of sources.
This package provides functions for modeling and forecasting time series data. Forecasting is based on the innovations algorithm. A description of the innovations algorithm can be found in the textbook "Introduction to Time Series and Forecasting" by Peter J. Brockwell and Richard A. Davis.
Temporary and permanent message queues for R. Built on top of SQLite databases. SQLite provides locking, and makes it possible to detect crashed consumers. Crashed jobs can be automatically marked as "failed", or put in the queue again, potentially a limited number of times.
Investigate the evolution of biological processes by capturing evolutionary signatures in transcriptomes (Drost et al. (2018) <doi:10.1093/bioinformatics/btx835>). This package aims to provide a transcriptome analysis environment to quantify the average evolutionary age of genes contributing to a transcriptome of interest.
This is an implementation of the partial profile score feature selection (PPSFS) approach to generalized linear (interaction) models. The PPSFS is highly scalable even for ultra-high-dimensional feature space. See the paper by Xu, Luo and Chen (2022, <doi:10.4310/21-SII706>).
Given a SpatialPolygonsDataFrame and a set of populations for each polygon, compute a population density estimate based on Tobler's pycnophylactic interpolation algorithm. The result is a SpatialGridDataFrame. Methods are described in Tobler Waldo R. (1979) <doi:10.1080/01621459.1979.10481647>.
This package provides tools for retrieving, organizing, and analyzing environmental data from the System Wide Monitoring Program of the National Estuarine Research Reserve System <https://cdmo.baruch.sc.edu/>. These tools address common challenges associated with continuous time series data for environmental decision making.
Handles both vector and matrices, using a flexible S4 class for automatic differentiation. The method used is forward automatic differentiation. Many functions and methods have been defined, so that in most cases, functions written without automatic differentiation in mind can be used without change.
This package provides a fast and accurate pipeline for single-cell analyses. The scDHA software package can perform clustering, dimension reduction and visualization, classification, and time-trajectory inference on single-cell data (Tran et.al. (2021) <DOI:10.1038/s41467-021-21312-2>).