Application of Variational Mode Decomposition based different Machine Learning models for univariate time series forecasting. For method details see (i) K. Dragomiretskiy and D. Zosso (2014) <doi:10.1109/TSP.2013.2288675>; (ii) Pankaj Das (2020) <http://krishi.icar.gov.in/jspui/handle/123456789/44138>.
This package provides a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains. Hutto & Gilbert (2014) <https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109/8122>.
Strand specific peak-pair calling in ChIP-exo replicates. The cumulative Skellam distribution function is used to detect significant normalised count differences of opposed sign at each DNA strand (peak-pairs). Then, irreproducible discovery rate for overlapping peak-pairs across biological replicates is computed.
Account for missing values in label-free mass spectrometry data without imputation. The package implements a probabilistic dropout model that ensures that the information from observed and missing values are properly combined. It adds empirical Bayesian priors to increase power to detect differentially abundant proteins.
This package provides methods for measuring the strength of association between a network and a phenotype. It does this by measuring clustering of the phenotype across the network (Knet). Vertices can also be individually ranked by their strength of association with high-weight vertices (Knode).
This package addresses the mean-variance relationship in spatially resolved transcriptomics data. Precision weights are generated for individual observations using Empirical Bayes techniques. These weights are used to rescale the data and covariates, which are then used as input in spatially variable gene detection tools.
This package contains many functions useful for data analysis, high-level graphics, utility operations, functions for computing sample size and power, importing and annotating datasets, imputing missing values, advanced table making, variable clustering, character string manipulation, conversion of R objects to LaTeX code, and recoding variables.
Optimized XML (Ox) is a fast XML parser and object serializer for Ruby written as a native C extension. It was designed to be an alternative to Nokogiri and other Ruby XML parsers for generic XML parsing and as an alternative to Marshal for Object serialization.
Utility functions to retrieve data from the UK National River Flow Archive (<https://nrfa.ceh.ac.uk/>, terms and conditions: <https://nrfa.ceh.ac.uk/help/costs-terms-and-conditions>). The package contains R wrappers to the UK NRFA data temporary-API. There are functions to retrieve stations falling in a bounding box, to generate a map and extracting time series and general information. The package is fully described in Vitolo et al (2016) "rnrfa: An R package to Retrieve, Filter and Visualize Data from the UK National River Flow Archive" <https://journal.r-project.org/archive/2016/RJ-2016-036/RJ-2016-036.pdf>.
This package provides a framework for estimating ensembles of parametric survival models with different parametric families. The RoBSA framework uses Bayesian model-averaging to combine the competing parametric survival models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual predictors or preference for a parametric family (Bartoš, Aust & Haaf, 2022, <doi:10.1186/s12874-022-01676-9>). The user can define a wide range of informative priors for all parameters of interest. The package provides convenient functions for summary, visualizations, fit diagnostics, and prior distribution calibration.
As an advanced approach to computerized adaptive testing (CAT), shadow testing (van der Linden(2005) <doi:10.1007/0-387-29054-0>) dynamically assembles entire shadow tests as a part of selecting items throughout the testing process. Selecting items from shadow tests guarantees the compliance of all content constraints defined by the blueprint. RSCAT is an R package for the shadow-test approach to CAT. The objective of RSCAT is twofold: 1) Enhancing the effectiveness of shadow-test CAT simulation; 2) Contributing to the academic and scientific community for CAT research. RSCAT is currently designed for dichotomous items based on the three-parameter logistic (3PL) model.
This package provides a collection of functions to simulate dice rolls and the like. In particular, experiments and exercises can be performed looking at combinations and permutations of values in dice rolls and coin flips, together with the corresponding frequencies of occurrences. When applying each function, the user has to input the number of times (rolls, flips) to toss the dice. Needless to say, the more the tosses, the more the frequencies approximate the actual probabilities. Moreover, the package provides functions to generate non-transitive sets of dice (like Efron's) and to check whether a given set of dice is non-transitive with given probability.
Bland-Altman plot and scatter plot with identity line for visualization and point and interval estimates for different metrics related to reproducibility/repeatability/agreement including the concordance correlation coefficient, intraclass correlation coefficient, within-subject coefficient of variation, smallest detectable difference, and mean normalized smallest detectable difference.
We provide a stage-wise selection method using genetic algorithm which can perform fast interaction selection in high-dimensional linear regression models with two-way interaction effects under strong, weak, or no heredity condition. Ye, C.,and Yang,Y. (2019) <doi:10.1109/TIT.2019.2913417>.
This package provides an interface to the algorithm selection benchmark library at <https://www.coseal.net/aslib/> and the LLAMA package (<https://cran.r-project.org/package=llama>) for building algorithm selection models; see Bischl et al. (2016) <doi:10.1016/j.artint.2016.04.003>.
This package provides functions to analyse overdispersed counts or proportions. These functions should be considered as complements to more sophisticated methods such as generalized estimating equations (GEE) or generalized linear mixed effect models (GLMM). aods3 is an S3 re-implementation of the deprecated S4 package aod.
This package provides a computationally-efficient leading-eigenvalue approximation to tail probabilities and quantiles of large quadratic forms, in particular for the Sequence Kernel Association Test (SKAT) used in genomics <doi:10.1002/gepi.22136>. Also provides stochastic singular value decomposition for dense or sparse matrices.
This package provides a maximum likelihood estimation of Bivariate Zero-Inflated Negative Binomial (BZINB) model or the nested model parameters. Also estimates the underlying correlation of the a pair of count data. See Cho, H., Liu, C., Preisser, J., and Wu, D. (In preparation) for details.
This package performs block diagonal covariance matrix detection using singular vectors (BD-SVD), which can be extended to hierarchical variable clustering (HC-SVD). The methods are described in Bauer (2024) <doi:10.1080/10618600.2024.2422985> and Bauer (202X) <doi:10.48550/arXiv.2308.06820>.
An improved multiple testing procedure for controlling false discovery rates which is developed based on the Bonferroni procedure with integrated estimates from the Benjamini-Hochberg procedure and the Storey's q-value procedure. It controls false discovery rates through controlling the expected number of false discoveries.
Differential analyses and Enrichment pipeline for bulk ATAC-seq data analyses. This package combines different packages to have an ultimate package for both data analyses and visualization of ATAC-seq data. Methods are described in Karakaslar et al. (2021) <doi:10.1101/2021.03.05.434143>.
Execute command line programs and format results for interactive use. It is based on the package processx so it does not use shell to start up the process like system() and system2(). It also provides a simpler and cleaner interface than processx::run().
Computes the probability density and cumulative distribution functions of fourteen distributions used for the probabilistic hazard assessment. Estimates the model parameters of the distributions using the maximum likelihood and reports the goodness-of-fit statistics. The recurrence interval estimations of earthquakes are computed for each distribution.
Easily analyze relational data from the United States 2016 federal election cycle as reported by the Federal Election Commission. This package contains data about candidates, committees, and a variety of different financial expenditures. Data is from <https://www.fec.gov/data/browse-data/?tab=bulk-data>.