As an advanced approach to computerized adaptive testing (CAT), shadow testing (van der Linden(2005) <doi:10.1007/0-387-29054-0>) dynamically assembles entire shadow tests as a part of selecting items throughout the testing process. Selecting items from shadow tests guarantees the compliance of all content constraints defined by the blueprint. RSCAT is an R package for the shadow-test approach to CAT. The objective of RSCAT is twofold: 1) Enhancing the effectiveness of shadow-test CAT simulation; 2) Contributing to the academic and scientific community for CAT research. RSCAT is currently designed for dichotomous items based on the three-parameter logistic (3PL) model.
This package provides a collection of functions to simulate dice rolls and the like. In particular, experiments and exercises can be performed looking at combinations and permutations of values in dice rolls and coin flips, together with the corresponding frequencies of occurrences. When applying each function, the user has to input the number of times (rolls, flips) to toss the dice. Needless to say, the more the tosses, the more the frequencies approximate the actual probabilities. Moreover, the package provides functions to generate non-transitive sets of dice (like Efron's) and to check whether a given set of dice is non-transitive with given probability.
This package provides a framework for estimating ensembles of parametric survival models with different parametric families. The RoBSA framework uses Bayesian model-averaging to combine the competing parametric survival models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual predictors or preference for a parametric family (Bartoš, Aust & Haaf, 2022, <doi:10.1186/s12874-022-01676-9>). The user can define a wide range of informative priors for all parameters of interest. The package provides convenient functions for summary, visualizations, fit diagnostics, and prior distribution calibration.
The ASAFE package contains a collection of functions that can be used to carry out an EM (Expectation–maximization) algorithm to estimate ancestry-specific allele frequencies for a bi-allelic genetic marker, e.g. an SNP (single nucleotide polymorphism) from genotypes and ancestry pairs.
The SciViews svGUI package eases the management of Graphical User Interfaces (GUI) in R. It is independent from any particular GUI widgets. It centralizes info about GUI elements currently used, and it dispatches GUI calls to the particular toolkits in use in function of the context.
RipperX is a GTK program to rip CD audio tracks and encode them to the Ogg, MP3, or FLAC formats. Its goal is to be easy to use, requiring only a few mouse clicks to convert an entire album. It supports CDDB lookups for album and track information.
Package for calculating aggregated isotopic distribution and exact center-masses for chemical substances (in this version composed of C, H, N, O and S). This is an implementation of the BRAIN algorithm described in the paper by J. Claesen, P. Dittwald, T. Burzykowski and D. Valkenborg.
Bland-Altman plot and scatter plot with identity line for visualization and point and interval estimates for different metrics related to reproducibility/repeatability/agreement including the concordance correlation coefficient, intraclass correlation coefficient, within-subject coefficient of variation, smallest detectable difference, and mean normalized smallest detectable difference.
This package provides functions to analyse overdispersed counts or proportions. These functions should be considered as complements to more sophisticated methods such as generalized estimating equations (GEE) or generalized linear mixed effect models (GLMM). aods3 is an S3 re-implementation of the deprecated S4 package aod.
We provide a stage-wise selection method using genetic algorithm which can perform fast interaction selection in high-dimensional linear regression models with two-way interaction effects under strong, weak, or no heredity condition. Ye, C.,and Yang,Y. (2019) <doi:10.1109/TIT.2019.2913417>.
This package provides an interface to the algorithm selection benchmark library at <https://www.coseal.net/aslib/> and the LLAMA package (<https://cran.r-project.org/package=llama>) for building algorithm selection models; see Bischl et al. (2016) <doi:10.1016/j.artint.2016.04.003>.
An improved multiple testing procedure for controlling false discovery rates which is developed based on the Bonferroni procedure with integrated estimates from the Benjamini-Hochberg procedure and the Storey's q-value procedure. It controls false discovery rates through controlling the expected number of false discoveries.
This package provides a computationally-efficient leading-eigenvalue approximation to tail probabilities and quantiles of large quadratic forms, in particular for the Sequence Kernel Association Test (SKAT) used in genomics <doi:10.1002/gepi.22136>. Also provides stochastic singular value decomposition for dense or sparse matrices.
This package performs block diagonal covariance matrix detection using singular vectors (BD-SVD), which can be extended to hierarchical variable clustering (HC-SVD). The methods are described in Bauer (2024) <doi:10.1080/10618600.2024.2422985> and Bauer (202X) <doi:10.48550/arXiv.2308.06820>.
This package provides a maximum likelihood estimation of Bivariate Zero-Inflated Negative Binomial (BZINB) model or the nested model parameters. Also estimates the underlying correlation of the a pair of count data. See Cho, H., Liu, C., Preisser, J., and Wu, D. (In preparation) for details.
Differential analyses and Enrichment pipeline for bulk ATAC-seq data analyses. This package combines different packages to have an ultimate package for both data analyses and visualization of ATAC-seq data. Methods are described in Karakaslar et al. (2021) <doi:10.1101/2021.03.05.434143>.
Execute command line programs and format results for interactive use. It is based on the package processx so it does not use shell to start up the process like system() and system2(). It also provides a simpler and cleaner interface than processx::run().
Computes the probability density and cumulative distribution functions of fourteen distributions used for the probabilistic hazard assessment. Estimates the model parameters of the distributions using the maximum likelihood and reports the goodness-of-fit statistics. The recurrence interval estimations of earthquakes are computed for each distribution.
Easily analyze relational data from the United States 2016 federal election cycle as reported by the Federal Election Commission. This package contains data about candidates, committees, and a variety of different financial expenditures. Data is from <https://www.fec.gov/data/browse-data/?tab=bulk-data>.
Use the graph-constrained estimation (Grace) procedure (Zhao and Shojaie, 2016 <doi:10.1111/biom.12418>) to estimate graph-guided linear regression coefficients and use the Grace/GraceI/GraceR tests to perform graph-guided hypothesis tests on the association between the response and the predictors.
Convert files to and from IDX format to vectors, matrices and arrays. IDX is a very simple file format designed for storing vectors and multidimensional matrices in binary format. The format is described on the website from Yann LeCun <http://yann.lecun.com/exdb/mnist/>.
Interface to Keras <https://keras.io>, a high-level neural networks API'. Keras was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both CPU and GPU devices.
Estimates a lognormal-Pareto mixture by means of the Expectation-Conditional-Maximization-Either algorithm and by maximizing the profile likelihood function. A likelihood ratio test for discriminating between lognormal and Pareto tail is also implemented. See Bee, M. (2022) <doi:10.1007/s11634-022-00497-4>.
This package provides a set of functions and tools to conduct acoustic source localization, as well as organize and check localization data and results. The localization functions implement the modified steered response power algorithm described by Cobos et al. (2010) <doi:10.1109/LSP.2010.2091502>.