Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Routines that allow the user to run goodness of fit tests based on empirical distribution functions for formal model evaluation in a general likelihood model. In addition, functions are provided to test if a sample follows Normal or Gamma distributions, validate the normality assumptions in a linear model, and examine the appropriateness of a Gamma distribution in generalized linear models with various link functions. Michael Arthur Stephens (1976) <http://www.jstor.org/stable/2958206>.
Simulates from discrete and continuous target distributions using geometric Metropolis-Hastings (MH) algorithms. Users specify the target distribution by an R function that evaluates the log un-normalized pdf or pmf. The package also contains a function implementing a specific geometric MH algorithm for performing high dimensional Bayesian variable selection.
Use the graph-constrained estimation (Grace) procedure (Zhao and Shojaie, 2016 <doi:10.1111/biom.12418>) to estimate graph-guided linear regression coefficients and use the Grace/GraceI/GraceR tests to perform graph-guided hypothesis tests on the association between the response and the predictors.
This package provides tools for working with polygons with holes in ggplot2', with a new geom for drawing a polypath applying the evenodd or winding rules.
Summarises a collection of partitions into a single optimal partition. The objective function is the expected posterior loss, and the minimisation is performed through a greedy algorithm described in Rastelli, R. and Friel, N. (2017) "Optimal Bayesian estimators for latent variable cluster models" <DOI:10.1007/s11222-017-9786-y>.
R Interface to C API of GLPK, depends on GLPK Version >= 4.42.
Computes Gregory weights for a given number nodes and function order. Anthony Ralston and Philip Rabinowitz (2001) <ISBN:9780486414546>.
Probability propagation in Bayesian networks, also known as graphical independence networks. Documentation of the package is provided in vignettes included in the package and in the paper by Højsgaard (2012, <doi:10.18637/jss.v046.i10>). See citation("gRain") for details.
An iterative algorithm that improves the proximity matrix (PM) from a random forest (RF) and the resulting clusters as measured by the silhouette score.
This package provides Generalized Inferences based on exact distributions and exact probability statements for mixed effect models, provided by such papers as Weerahandi and Yu (2020) <doi:10.1186/s40488-020-00105-w> under the widely used Compound Symmetric Covariance structure. The package returns the estimation of the coefficients in random and fixed part of the mixed models by generalized inference.
This package provides a framework to assist creation of marine ecosystem models, generating either R or C++ code which can then be optimised using the TMB package and standard R tools. Principally designed to reproduce gadget2 models in TMB', but can be extended beyond gadget2's capabilities. Kasper Kristensen, Anders Nielsen, Casper W. Berg, Hans Skaug, Bradley M. Bell (2016) <doi:10.18637/jss.v070.i05> "TMB: Automatic Differentiation and Laplace Approximation.". Begley, J., & Howell, D. (2004) <https://core.ac.uk/download/pdf/225936648.pdf> "An overview of Gadget, the globally applicable area-disaggregated general ecosystem toolbox. ICES.".
Computes Gromov-Hausdorff type l^p distances for labeled metric spaces. These distances were introduced in V.Liebscher, Gromov meets Phylogenetics - new Animals for the Zoo of Metrics on Tree Space <arXiv:1504.05795> for phylogenetic trees, but may apply to a diversity of scenarios.
This package provides a ggplot2 extension for visualising uncertainty with the goal of signal suppression. Usually, uncertainty visualisation focuses on expressing uncertainty as a distribution or probability, whereas ggdibbler differentiates itself by viewing an uncertainty visualisation as an adjustment to an existing graphic that incorporates the inherent uncertainty in the estimates. You provide the code for an existing plot, but replace any of the variables with a vector of distributions, and it will convert the visualisation into it's signal suppression counterpart.
This package provides multiple palettes based on pride flags with tailored themes.
This package provides tools for fitting sparse generalised linear mixed models with l0 regularisation. Selects fixed and random effects under the hierarchy constraint that fixed effects must precede random effects. Uses coordinate descent and local search algorithms to rapidly deliver near-optimal estimates. Gaussian and binomial response families are currently supported. For more details see Thompson, Wand, and Wang (2025) <doi:10.48550/arXiv.2506.20425>.
This package provides a system for fitting Gompertz Curve in a Time Series Data.
Fits a Gaussian process model to data. Gaussian processes are commonly used in computer experiments to fit an interpolating model. The model is stored as an R6 object and can be easily updated with new data. There are options to run in parallel, and Rcpp has been used to speed up calculations. For more info about Gaussian process software, see Erickson et al. (2018) <doi:10.1016/j.ejor.2017.10.002>.
This package implements the generalized Gauss Markov regression, this is useful when both predictor and response have uncertainty attached to them and also when covariance within the predictor, within the response and between the predictor and the response is present. Base on the results published in guide ISO/TS 28037 (2010) <https://www.iso.org/standard/44473.html>.
This package provides a quick and easy access to the GraphHopper Directions API. GraphHopper <https://www.graphhopper.com/> itself is a routing engine based on OpenStreetMap data. API responses can be converted to simple feature (sf) objects in a convenient way.
Generalized promotion time cure model (GPTCM) via Bayesian hierarchical modeling for multiscale data integration (Zhao et al. (2025) <doi:10.48550/arXiv.2509.01001>). The Bayesian GPTCMs are applicable for both low- and high-dimensional data.
Extract and reform data from GWAS (genome-wide association study) results, and then make a single integrated forest plot containing multiple windows of which each shows the result of individual SNPs (or other items of interest).
This package provides functions for matching student-answers to teacher answers for a variety of data types.
This package provides methods for automatic calculation of gene scores from gene count tables, including a Z-score method that requires a table of samples being scored and a count table with control samples; a geometric mean method that does not rely on control samples; and a principal component-based method that summarizes gene expression using user-selected principal components. The Z-score and geometric mean approaches are described in Kim et al. (2018) <doi:10.1089/jir.2017.0127>.
The gamma-Orthogonal Matching Pursuit (gamma-OMP) is a recently suggested modification of the OMP feature selection algorithm for a wide range of response variables. The package offers many alternative regression models, such linear, robust, survival, multivariate etc., including k-fold cross-validation. References: Tsagris M., Papadovasilakis Z., Lakiotaki K. and Tsamardinos I. (2018). "Efficient feature selection on gene expression data: Which algorithm to use?" BioRxiv. <doi:10.1101/431734>. Tsagris M., Papadovasilakis Z., Lakiotaki K. and Tsamardinos I. (2022). "The gamma-OMP algorithm for feature selection with application to gene expression data". IEEE/ACM Transactions on Computational Biology and Bioinformatics 19(2): 1214--1224. <doi:10.1109/TCBB.2020.3029952>.