This package provides tools for creating publication-ready dimensionality reduction plots, including Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). This package helps visualize high-dimensional data with options for custom labels, density plots, and faceting, using the ggplot2 framework Wickham (2016) <doi:10.1007/978-3-319-24277-4>.
Process in-situ Gamma-Ray Spectrometry for Luminescence Dating. This package allows to import, inspect and correct the energy shifts of gamma-ray spectra. It provides methods for estimating the gamma dose rate by the use of a calibration curve as described in Mercier and Falguères (2007). The package only supports Canberra CNF and TKA and Kromek SPE files.
Scan multiple Git repositories, pull specified files content and process it with large language models. You can summarize the content in specific way, extract information and data, or find answers to your questions about the repositories. The output can be stored in vector database and used for semantic search or as a part of a RAG (Retrieval Augmented Generation) prompt.
This package provides a integrated variance correlation is proposed to measure the dependence between a categorical or continuous random variable and a continuous random variable or vector. This package is designed to estimate the new correlation coefficient with parametric and nonparametric approaches. Test of independence for different problems can also be implemented via the new correlation coefficient with this package.
Implementation of various kernel adaptive methods in nonparametric curve estimation like density estimation as introduced in Stute and Srihera (2011) <doi:10.1016/j.spl.2011.01.013> and Eichner and Stute (2013) <doi:10.1016/j.jspi.2012.03.011> for pointwise estimation, and like regression as described in Eichner and Stute (2012) <doi:10.1080/10485252.2012.760737>.
Predictive multivariate modelling for metabolomics. Types: Classification and regression. Methods: Partial Least Squares, Random Forest ans Elastic Net Data structures: Paired and unpaired Validation: repeated double cross-validation (Westerhuis et al. (2008)<doi:10.1007/s11306-007-0099-6>, Filzmoser et al. (2009)<doi:10.1002/cem.1225>) Variable selection: Performed internally, through tuning in the inner cross-validation loop.
The Multivariate Asymptotic Non-parametric Test of Association (MANTA) enables non-parametric, asymptotic P-value computation for multivariate linear models. MANTA relies on the asymptotic null distribution of the PERMANOVA test statistic. P-values are computed using a highly accurate approximation of the corresponding cumulative distribution function. Garrido-Martà n et al. (2022) <doi:10.1101/2022.06.06.493041>.
Fits the mixed cumulative incidence functions model suggested by <doi:10.1093/biostatistics/kxx072> which decomposes within cluster dependence of risk and timing. The estimation method supports computation in parallel using a shared memory C++ implementation. A sandwich estimator of the covariance matrix is available. Natural cubic splines are used to provide a flexible model for the cumulative incidence functions.
Set of tools to automatize extraction of data on pests from EPPO Data Services and EPPO Global Database and to put them into tables with human readable format. Those function use EPPO database API', thus you first need to register on <https://data.eppo.int> (free of charge). Additional helpers allow to download, check and connect to SQLite EPPO database'.
Currently incorporate the generalized odds-rate model (a type of linear transformation model) for interval-censored data based on penalized monotonic B-Spline. More methods under other semiparametric models such as cure model or additive model will be included in future versions. For more details see Lu, M., Liu, Y., Li, C. and Sun, J. (2019) <arXiv:1912.11703>
.
Simulation extrapolation and inverse probability weighted generalized estimating equations method for longitudinal data with missing observations and measurement error in covariates. References: Yi, G. Y. (2008) <doi:10.1093/biostatistics/kxm054>; Cook, J. R. and Stefanski, L. A. (1994) <doi:10.1080/01621459.1994.10476871>; Little, R. J. A. and Rubin, D. B. (2002, ISBN:978-0-471-18386-0).
Estimates the coefficients of the two-time centered autologistic regression model based on Gegout-Petit A., Guerin-Dubrana L., Li S. "A new centered spatio-temporal autologistic regression model. Application to local spread of plant diseases." 2019. <arXiv:1811.06782>
, using a grid of binary variables to estimate the spread of a disease on the grid over the years.
This package provides a general spatiotemporal satellite image imputation method based on sparse functional data analytic techniques. The imputation method applies and extends the Functional Principal Analysis by Conditional Estimation (PACE). The underlying idea for the proposed procedure is to impute a missing pixel by borrowing information from temporally and spatially contiguous pixels based on the best linear unbiased prediction.
Fast and efficient sampling from general univariate probability density functions. Implements a rejection sampling approach designed to take advantage of modern CPU caches and minimise evaluation of the target density for most samples. Many standard densities are internally implemented in C for high performance, with general user defined densities also supported. A paper describing the methodology will be released soon.
Implementation of Azure DevOps
<https://azure.microsoft.com/> API calls. It enables the extraction of information about repositories, build and release definitions and individual releases. It also helps create repositories and work items within a project without logging into Azure DevOps
'. There is the ability to use any API service with a shell for any non-predefined call.
Variable Penalty Dynamic Time Warping (VPdtw) for aligning chromatographic signals. With an appropriate penalty this method performs good alignment of chromatographic data without deforming the peaks (Clifford, D., Stone, G., Montoliu, I., Rezzi S., Martin F., Guy P., Bruce S., and Kochhar S.(2009) <doi:10.1021/ac802041e>; Clifford, D. and Stone, G. (2012) <doi:10.18637/jss.v047.i08>).
Fits hierarchical regularized regression models to incorporate potentially informative external data, Weaver and Lewinger (2019) <doi:10.21105/joss.01761>. Utilizes coordinate descent to efficiently fit regularized regression models both with and without external information with the most common penalties used in practice (i.e. ridge, lasso, elastic net). Support for standard R matrices, sparse matrices and big.matrix objects.
The r-mhsmm
package implements estimation and prediction methods for hidden Markov and semi-Markov models for multiple observation sequences. Such techniques are of interest when observed data is thought to be dependent on some unobserved (or hidden) state. Also, this package is suitable for equidistant time series data, with multivariate and/or missing data. Allows user defined emission distributions.
The Bayesian modelling of relative sea-level data using a comprehensive approach that incorporates various statistical models within a unifying framework. Details regarding each statistical models; linear regression (Ashe et al 2019) <doi:10.1016/j.quascirev.2018.10.032>, change point models (Cahill et al 2015) <doi:10.1088/1748-9326/10/8/084002>, integrated Gaussian process models (Cahill et al 2015) <doi:10.1214/15-AOAS824>, temporal splines (Upton et al 2023) <arXiv:2301.09556>
, spatio-temporal splines (Upton et al 2023) <arXiv:2301.09556>
and generalised additive models (Upton et al 2023) <arXiv:2301.09556>
. This package facilitates data loading, model fitting and result summarisation. Notably, it accommodates the inherent measurement errors found in relative sea-level data across multiple dimensions, allowing for their inclusion in the statistical models.
T (extent of the primary tumor), N (absence or presence and extent of regional lymph node metastasis) and M (absence or presence of distant metastasis) are three components to describe the anatomical tumor extent. TNM stage is important in treatment decision-making and outcome predicting. The existing oropharyngeal Cancer (OPC) TNM stages have not made distinction of the two sub sites of Human papillomavirus positive (HPV+) and Human papillomavirus negative (HPV-) diseases. We developed novel criteria to assess performance of the TNM stage grouping schemes based on parametric modeling adjusting on important clinical factors. These criteria evaluate the TNM stage grouping scheme in five different measures: hazard consistency, hazard discrimination, explained variation, likelihood difference, and balance. The methods are described in Xu, W., et al. (2015) <https://www.austinpublishinggroup.com/biometrics/fulltext/biometrics-v2-id1014.php>.
Using a Bayesian estimation procedure, this package fits linear quantile regression models such as linear quantile models, linear quantile mixed models, quantile regression joint models for time-to-event and longitudinal data. The estimation procedure is based on the asymmetric Laplace distribution and the JAGS software is used to get posterior samples (Yang, Luo, DeSantis
(2019) <doi:10.1177/0962280218784757>).
Implementations of the family of map()
functions with frequent saving of the intermediate results. The contained functions let you start the evaluation of the iterations where you stopped (reading the already evaluated ones from cache), and work with the currently evaluated iterations while remaining ones are running in a background job. Parallel computing is also easier with the workers parameter.
Calculates standard errors and confidence intervals for effects in continuous-time mediation models. This package extends the work of Deboeck and Preacher (2015) <doi:10.1080/10705511.2014.973960> and Ryan and Hamaker (2021) <doi:10.1007/s11336-021-09767-0> by providing methods to generate standard errors and confidence intervals for the total, direct, and indirect effects in these models.
Interact with the FRED API, <https://fred.stlouisfed.org/docs/api/fred/>, to fetch observations across economic series; find information about different economic sources, releases, series, etc.; conduct searches by series name, attributes, or tags; and determine the latest updates. Includes functions for creating panels of related variables with minimal effort and datasets containing data sources, releases, and popular FRED tags.