Use the graph-constrained estimation (Grace) procedure (Zhao and Shojaie, 2016 <doi:10.1111/biom.12418>) to estimate graph-guided linear regression coefficients and use the Grace/GraceI/GraceR tests to perform graph-guided hypothesis tests on the association between the response and the predictors.
Convert files to and from IDX format to vectors, matrices and arrays. IDX is a very simple file format designed for storing vectors and multidimensional matrices in binary format. The format is described on the website from Yann LeCun <http://yann.lecun.com/exdb/mnist/>.
Provide routines for filtering and smoothing, forecasting, sampling and Bayesian analysis of Dynamic Generalized Linear Models using the methodology described in Alves et al. (2024)<doi:10.48550/arXiv.2201.05387> and dos Santos Jr. et al. (2024)<doi:10.48550/arXiv.2403.13069>.
Interface to Keras <https://keras.io>, a high-level neural networks API'. Keras was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both CPU and GPU devices.
Estimates a lognormal-Pareto mixture by means of the Expectation-Conditional-Maximization-Either algorithm and by maximizing the profile likelihood function. A likelihood ratio test for discriminating between lognormal and Pareto tail is also implemented. See Bee, M. (2022) <doi:10.1007/s11634-022-00497-4>.
This package provides a set of functions and tools to conduct acoustic source localization, as well as organize and check localization data and results. The localization functions implement the modified steered response power algorithm described by Cobos et al. (2010) <doi:10.1109/LSP.2010.2091502>.
Probabilistic record linkage without direct identifiers using only diagnosis codes. Method is detailed in: Hejblum, Weber, Liao, Palmer, Churchill, Szolovits, Murphy, Kohane & Cai (2019) <doi: 10.1038/sdata.2018.298> ; Zhang, Hejblum, Weber, Palmer, Churchill, Szolovits, Murphy, Liao, Kohane & Cai (2021) <doi: 10.1093/jamia/ocab187>.
Computes the degrees of freedom of the lasso, elastic net, generalized elastic net and adaptive lasso based on the generalized path seeking algorithm. The optimal model can be selected by model selection criteria including Mallows Cp, bias-corrected AIC (AICc), generalized cross validation (GCV) and BIC.
Generates mid upper arm circumference (MUAC) and body mass index (BMI) for age z-scores and percentiles based on LMS method for children and adolescents up to 19 years that can be used to assess nutritional and health status and define risk of adverse health events.
This package provides functions for nominal data mining based on bipartite graphs, which build a pipeline for analysis and missing values imputation. Methods are mainly from the paper: Jafari, Mohieddin, et al. (2021) <doi:10.1101/2021.03.18.436040>, some new ones are also included.
Partial Least Squares Path Modeling (PLS-PM), Tenenhaus, Esposito Vinzi, Chatelin, Lauro (2005) <doi:10.1016/j.csda.2004.03.005>, analysis for both metric and non-metric data, as well as REBUS analysis, Esposito Vinzi, Trinchera, Squillacciotti, and Tenenhaus (2008) <doi:10.1002/asmb.728>.
This package implements the pcgen algorithm, which is a modified version of the standard pc-algorithm, with specific conditional independence tests and modified orientation rules. pcgen extends the approach of Valente et al. (2010) <doi:10.1534/genetics.109.112979> with reconstruction of direct genetic effects.
The Prais-Winsten estimator (Prais & Winsten, 1954) takes into account AR(1) serial correlation of the errors in a linear regression model. The procedure recursively estimates the coefficients and the error autocorrelation of the specified model until sufficient convergence of the AR(1) coefficient is attained.
This package contains functions to identify tree-ring borders based on X-ray micro-density profiles and a Graphical User Interface (GUI) to visualize density profiles and correct tree-ring borders. Campelo F, Mayer K, Grabner M. (2019) <doi:10.1016/j.dendro.2018.11.002>.
Package for calculating aggregated isotopic distribution and exact center-masses for chemical substances (in this version composed of C, H, N, O and S). This is an implementation of the BRAIN algorithm described in the paper by J. Claesen, P. Dittwald, T. Burzykowski and D. Valkenborg.
The ASAFE package contains a collection of functions that can be used to carry out an EM (Expectation–maximization) algorithm to estimate ancestry-specific allele frequencies for a bi-allelic genetic marker, e.g. an SNP (single nucleotide polymorphism) from genotypes and ancestry pairs.
The SciViews svGUI package eases the management of Graphical User Interfaces (GUI) in R. It is independent from any particular GUI widgets. It centralizes info about GUI elements currently used, and it dispatches GUI calls to the particular toolkits in use in function of the context.
This package provides an interface to Keras, a high-level neural networks API. Keras was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both CPU and GPU devices.
RipperX is a GTK program to rip CD audio tracks and encode them to the Ogg, MP3, or FLAC formats. Its goal is to be easy to use, requiring only a few mouse clicks to convert an entire album. It supports CDDB lookups for album and track information.
Rogue ("wildcard") taxa are leaves with uncertain phylogenetic position. Their position may vary from tree to tree under inference methods that yield a tree set (e.g. bootstrapping, Bayesian tree searches, maximum parsimony). The presence of rogue taxa in a tree set can potentially remove all information from a consensus tree. The information content of a consensus tree - a function of its resolution and branch support values - can often be increased by removing rogue taxa. Rogue provides an explicitly information-theoretic approach to rogue detection (Smith 2022) <doi:10.1093/sysbio/syab099>, and an interface to RogueNaRok (Aberer et al. 2013) <doi:10.1093/sysbio/sys078>.
This package provides an intuitive and user-friendly interface for working with emojis in R'. It allows users to search, insert, and manage emojis by keyword, category, or through an interactive shiny'-based drop-down. The package enables integration of emojis into R scripts, R Markdown', Quarto', shiny apps, and ggplot2 plots. Also includes built-in mappings for commit messages, useful for version control. It builds on established emoji libraries and Unicode standards, adding expressiveness and visual cues to documentation, user interfaces, and reports. For more details see Emojipedia (2024) <https://emojipedia.org> and GitHub Emoji Cheat Sheet <https://github.com/ikatyang/emoji-cheat-sheet/tree/master>.
Fetches monthly financial tables and banking sector data published on the official website of the Banking Regulation and Supervision Agency of Turkey and also enables you to save it as an Excel file. It is a R implementation of the Python package <https://pypi.org/project/bddkdata/>.
Makes difficult operations easy. Includes these types of functions: shorthand, type conversion, data wrangling, and work flow. Also includes some helpful data objects: NA strings, U.S. state list, color blind charting colors. Built and shared by Oliver Wyman Actuarial Consulting. Accepting proposed contributions through GitHub.
It contains a function designed to the joint segmentation in the mean of several correlated series. The method is described in the paper X. Collilieux, E. Lebarbier and S. Robin. A factor model approach for the joint segmentation with between-series correlation (2015) <arXiv:1505.05660>.