Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Package for Genetic Epidemiologic Methods Developed at MSKCC. It contains functions to calculate haplotype specific odds ratio and the power of two stage design for GWAS studies.
This package provides ggplot2 functions to return the results of seasonal and trading day adjustment made by RJDemetra'. RJDemetra is an R interface around JDemetra+ (<https://github.com/jdemetra/jdemetra-app>), the seasonal adjustment software officially recommended to the members of the European Statistical System and the European System of Central Banks.
Techniques from a particular branch of spatial statistics,termed geographically-weighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localised calibration provides a better description. GWmodel includes functions to calibrate: GW summary statistics (Brunsdon et al., 2002)<doi: 10.1016/s0198-9715(01)00009-6>, GW principal components analysis (Harris et al., 2011)<doi: 10.1080/13658816.2011.554838>, GW discriminant analysis (Brunsdon et al., 2007)<doi: 10.1111/j.1538-4632.2007.00709.x> and various forms of GW regression (Brunsdon et al., 1996)<doi: 10.1111/j.1538-4632.1996.tb00936.x>; some of which are provided in basic and robust (outlier resistant) forms.
Likelihood-based boosting approaches for generalized mixed models are provided.
An R package for creating panels of diagnostic plots for residuals from a model using ggplot2 and plotly to analyze residuals and model assumptions from a variety of viewpoints. It also allows for the creation of interactive diagnostic plots.
Extends the capabilities of ggplot2 by providing grammatical elements and plot helpers designed for visualizing temporal patterns. The package implements a grammar of temporal graphics, which leverages calendar structures to highlight changes over time. The package also provides plot helper functions to quickly produce commonly used time series graphics, including time plots, season plots, and seasonal sub-series plots.
Reads annual and quarterly financial reports from companies traded at B3, the Brazilian exchange <https://www.b3.com.br/>. All data is downloaded and imported from CVM's public ftp site <https://dados.cvm.gov.br/dados/CIA_ABERTA/>.
Analyze small-sample clustered or longitudinal data using modified generalized estimating equations with bias-adjusted covariance estimator. The package provides any combination of three modified generalized estimating equations and 11 bias-adjusted covariance estimators.
Simulation and analysis of graded response data with different types of estimators. Also, an interactive shiny application is provided with graphics for characteristic and information curves. Samejima (2018) <doi:10.1007/978-1-4757-2691-6_5>.
This package provides a set of high efficient functions to decode identifiers of National Football League players.
Forest-based statistical estimation and inference. GRF provides non-parametric methods for heterogeneous treatment effects estimation (optionally using right-censored outcomes, multiple treatment arms or outcomes, or instrumental variables), as well as least-squares regression, quantile regression, and survival regression, all with support for missing covariates.
Estimation, model selection and other aspects of statistical inference in Graphical Gaussian models with edge and vertex symmetries (Graphical Gaussian models with colours). Documentation about gRc is provided in the paper by Hojsgaard and Lauritzen (2007, <doi:10.18637/jss.v023.i06>) and the paper by Hojsgaard and Lauritzen (2008, <doi:10.1111/j.1467-9868.2008.00666.x>).
Supports modeling health outcomes using Bayesian hierarchical spatio-temporal models with complex covariate effects (e.g., linear, non-linear, interactions, distributed lag linear and non-linear models) in the INLA framework. It is designed to help users identify key drivers and predictors of disease risk by enabling streamlined model exploration, comparison, and visualization of complex covariate effects. See an application of the modelling framework in Lowe, Lee, O'Reilly et al. (2021) <doi:10.1016/S2542-5196(20)30292-8>.
Estimation of the generalized beta distribution of the second kind (GB2) and related models using grouped data in form of income shares. The GB2 family is a general class of distributions that provides an accurate fit to income data. GB2group includes functions to estimate the GB2, the Singh-Maddala, the Dagum, the Beta 2, the Lognormal and the Fisk distributions. GB2group deploys two different econometric strategies to estimate these parametric distributions, the equally weighted minimum distance (EWMD) estimator and the optimally weighted minimum distance (OMD) estimator. Asymptotic standard errors are reported for the OMD estimates. Standard errors of the EWMD estimates are obtained by Monte Carlo simulation. See Jorda et al. (2018) <arXiv:1808.09831> for a detailed description of the estimation procedure.
This package provides tools for assessing and diagnosing convergence of Markov Chain Monte Carlo simulations, as well as for graphically display results from full MCMC analysis. The package also facilitates the graphical interpretation of models by providing flexible functions to plot the results against observed variables, and functions to work with hierarchical/multilevel batches of parameters (Fernández-i-Marà n, 2016 <doi:10.18637/jss.v070.i09>).
The geohabnet package is designed to perform a geographically or spatially explicit risk analysis of habitat connectivity. Xing et al (2021) <doi:10.1093/biosci/biaa067> proposed the concept of cropland connectivity as a risk factor for plant pathogen or pest invasions. As the functions in geohabnet were initially developed thinking on cropland connectivity, users are recommended to first be familiar with the concept by looking at the Xing et al paper. In a nutshell, a habitat connectivity analysis combines information from maps of host density, estimates the relative likelihood of pathogen movement between habitat locations in the area of interest, and applies network analysis to calculate the connectivity of habitat locations. The functions of geohabnet are built to conduct a habitat connectivity analysis relying on geographic parameters (spatial resolution and spatial extent), dispersal parameters (in two commonly used dispersal kernels: inverse power law and negative exponential models), and network parameters (link weight thresholds and network metrics). The functionality and main extensions provided by the functions in geohabnet to habitat connectivity analysis are a) Capability to easily calculate the connectivity of locations in a landscape using a single function, such as sensitivity_analysis() or msean(). b) As backbone datasets, the geohabnet package supports the use of two publicly available global datasets to calculate cropland density. The backbone datasets in the geohabnet package include crop distribution maps from Monfreda, C., N. Ramankutty, and J. A. Foley (2008) <doi:10.1029/2007gb002947> "Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cycles, 22, GB1022" and International Food Policy Research Institute (2019) <doi:10.7910/DVN/PRFF8V> "Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0, Harvard Dataverse, V4". Users can also provide any other geographic dataset that represents host density. c) Because the geohabnet package allows R users to provide maps of host density (as originally in Xing et al (2021)), host landscape density (representing the geographic distribution of either crops or wild species), or habitat distribution (such as host landscape density adjusted by climate suitability) as inputs, we propose the term habitat connectivity. d) The geohabnet package allows R users to customize parameter values in the habitat connectivity analysis, facilitating context-specific (pathogen- or pest-specific) analyses. e) The geohabnet package allows users to automatically visualize maps of the habitat connectivity of locations resulting from a sensitivity analysis across all customized parameter combinations. The primary functions are msean() and sensitivity analysis(). Most functions in geohabnet provide three main outcomes: i) A map of mean habitat connectivity across parameters selected by the user, ii) a map of variance of habitat connectivity across the selected parameters, and iii) a map of the difference between the ranks of habitat connectivity and habitat density. Each function can be used to generate these maps as final outcomes. Each function can also provide intermediate outcomes, such as the adjacency matrices built to perform the analysis, which can be used in other network analysis. Refer to article at <https://garrettlab.github.io/HabitatConnectivity/articles/analysis.html> to see examples of each function and how to access each of these outcome types. To change parameter values, the file called parameters.yaml stores the parameters and their values, can be accessed using get_parameters() and set new parameter values with set_parameters()'. Users can modify up to ten parameters.
Given exposure and survival time series as well as parameter values, GUTS allows for the fast calculation of the survival probabilities as well as the logarithm of the corresponding likelihood (see Albert, C., Vogel, S. and Ashauer, R. (2016) <doi:10.1371/journal.pcbi.1004978>).
Calculates the cost of crossing in terms of the number of individuals and generations, which is theoretically formulated by Servin et al. (2004) <DOI:10.1534/genetics.103.023358>. This package has been designed for selecting appropriate parental genotypes and find the most efficient crossing scheme for gene pyramiding, especially for plant breeding.
Maximum likelihood estimation under relational models, with or without the overall effect.
Consider a goodness-of-fit (GOF) problem of testing whether a random sample comes from one sample location-scale model where location and scale parameters are unknown. It is well known that Khmaladze martingale transformation method proposed by Khmaladze (1981) <doi:10.1137/1126027> provides asymptotic distribution free test for the GOF problem. This package provides test statistic and critical value of GOF test for normal, Cauchy, and logistic distributions. This package used the main algorithm proposed by Kim (2020) <doi:10.1007/s00180-020-00971-7> and tests for other distributions will be available at the later version.
Download and process public domain works in the Project Gutenberg collection <https://www.gutenberg.org/>. Includes metadata for all Project Gutenberg works, so that they can be searched and retrieved.
Genomic selection is a specialized form of marker assisted selection. The package contains functions to select important genetic markers and predict phenotype on the basis of fitted training data using integrated model framework (Guha Majumdar et. al. (2019) <doi:10.1089/cmb.2019.0223>) developed by combining one additive (sparse additive models by Ravikumar et. al. (2009) <doi:10.1111/j.1467-9868.2009.00718.x>) and one non-additive (hsic lasso by Yamada et. al. (2014) <doi:10.1162/NECO_a_00537>) model.
This package implements several extensions of the elastic net regularization scheme. These extensions include individual feature penalties for the L1 term, feature-feature penalties for the L2 term, as well as translation coefficients for the latter.
Many tools for Geometric Data Analysis (Le Roux & Rouanet (2005) <doi:10.1007/1-4020-2236-0>), such as MCA variants (Specific Multiple Correspondence Analysis, Class Specific Analysis), many graphical and statistical aids to interpretation (structuring factors, concentration ellipses, inductive tests, bootstrap validation, etc.) and multiple-table analysis (Multiple Factor Analysis, between- and inter-class analysis, Principal Component Analysis and Correspondence Analysis with Instrumental Variables, etc.).