Contingency Tables are a pain to work with when you want to run regressions. This package takes them, flattens them into a long data frame, so you can more easily analyse them! As well, you can calculate other related statistics. All of this is done so in a tidy manner, so it should tie in nicely with tidyverse series of packages.
Data-driven approach for arriving at person-specific time series models. The method first identifies which relations replicate across the majority of individuals to detect signal from noise. These group-level relations are then used as a foundation for starting the search for person-specific (or individual-level) relations. See Gates & Molenaar (2012) <doi:10.1016/j.neuroimage.2012.06.026>.
Instrumental variable (IV) estimators for homogeneous and heterogeneous treatment effects with efficient machine learning instruments. The estimators are based on double/debiased machine learning allowing for nonlinear and potentially high-dimensional control variables. Details can be found in Scheidegger, Guo and Bühlmann (2025) "Inference for heterogeneous treatment effects with efficient instruments and machine learning" <doi:10.48550/arXiv.2503.03530>
.
This package provides a gridded classification of weather types by applying the Jenkinson and Collison classification. For a given region (it can be either local region or the whole map),it computes at each grid the 11 weather types during the period considered for the analysis. See Otero et al., (2017) <doi:10.1007/s00382-017-3705-y> for more information.
Estimate, fit and compare Structural Equation Models (SEM) and network models (Gaussian Graphical Models; GGM) using OpenMx
. Allows for two possible generalizations to include GGMs in SEM: GGMs can be used between latent variables (latent network modeling; LNM) or between residuals (residual network modeling; RNM). For details, see Epskamp, Rhemtulla and Borsboom (2017) <doi:10.1007/s11336-017-9557-x>.
An implementation of the Monte Carlo techniques described in details by Dufour (2006) <doi:10.1016/j.jeconom.2005.06.007> and Dufour and Khalaf (2007) <doi:10.1002/9780470996249.ch24>. The two main features available are the Monte Carlo method with tie-breaker, mc()
, for discrete statistics, and the Maximized Monte Carlo, mmc()
, for statistics with nuisance parameters.
Describes spatial patterns of categorical raster data for any defined regular and irregular areas. Patterns are described quantitatively using built-in signatures based on co-occurrence matrices but also allows for any user-defined functions. It enables spatial analysis such as search, change detection, and clustering to be performed on spatial patterns (Nowosad (2021) <doi:10.1007/s10980-020-01135-0>).
Matching longitudinal methodology models with complex sampling design. It fits fixed and random effects models and covariance structured models so far. It also provides tools to perform statistical tests considering these specifications as described in : Pacheco, P. H. (2021). "Modeling complex longitudinal data in R: development of a statistical package." <https://repositorio.ufjf.br/jspui/bitstream/ufjf/13437/1/pedrohenriquedemesquitapacheco.pdf>.
Multiple and generalized nonparametric regression using smoothing spline ANOVA models and generalized additive models, as described in Helwig (2020) <doi:10.4135/9781526421036885885>. Includes support for Gaussian and non-Gaussian responses, smoothers for multiple types of predictors (including random intercepts), interactions between smoothers of mixed types, eight different methods for smoothing parameter selection, and flexible tools for diagnostics, inference, and prediction.
Expands quoted language by recursively replacing any symbol that points to quoted language with the language it points to. The recursive process continues until only symbols that point to non-language objects remain. The resulting quoted language can then be evaluated normally. This differs from the traditional quote'/'eval pattern because it resolves intermediate language objects that would interfere with evaluation.
Parsimonious Ultrametric Gaussian Mixture Models via grouped coordinate ascent (equivalent to EM) algorithm characterized by the inspection of hierarchical relationships among variables via parsimonious extended ultrametric covariance structures. The methodologies are described in Cavicchia, Vichi, Zaccaria (2024) <doi:10.1007/s11222-024-10405-9>, (2022) <doi:10.1007/s11634-021-00488-x> and (2020) <doi:10.1007/s11634-020-00400-z>.
An implementation of the parameter cascade method in Ramsay, J. O., Hooker,G., Campbell, D., and Cao, J. (2007) for estimating ordinary differential equation models with missing or complete observations. It combines smoothing method and profile estimation to estimate any non-linear dynamic system. The package also offers variance estimates for parameters of interest based on either bootstrap or Delta method.
Analysis of seed germination data using the physiological time modelling approach. Includes functions to fit hydrotime and thermal-time models with the traditional approaches of Bradford (1990) <doi:10.1104/pp.94.2.840> and Garcia-Huidobro (1982) <doi:10.1093/jxb/33.2.288>. Allows to fit models to grouped datasets, i.e. datasets containing multiple species, seedlots or experiments.
Spatio-temporal change of support (STCOS) methods are designed for statistical inference on geographic and time domains which differ from those on which the data were observed. In particular, a parsimonious class of STCOS models supporting Gaussian outcomes was introduced by Bradley, Wikle, and Holan <doi:10.1002/sta4.94>. The stcos package contains tools which facilitate use of STCOS models.
This package provides a collection of tools for trade practitioners, including the ability to calibrate different consumer demand systems and simulate the effects of tariffs and quotas under different competitive regimes. These tools are derived from Anderson et al. (2001) <doi:10.1016/S0047-2727(00)00085-2> and Froeb et al. (2003) <doi:10.1016/S0304-4076(02)00166-5>.
This package provides resampling procedures to assess the stability of selected variables with additional finite sample error control for high-dimensional variable selection procedures such as Lasso or boosting. Both, standard stability selection (Meinshausen & Buhlmann, 2010) and complementary pairs stability selection with improved error bounds (Shah & Samworth, 2013) are implemented. The package can be combined with arbitrary user specified variable selection approaches.
This package contains various tools for working with and evaluating cross-validated area under the ROC curve (AUC) estimators. The primary functions of the package are ci.cvAUC
and ci.pooled.cvAUC
, which report cross-validated AUC and compute confidence intervals for cross-validated AUC estimates based on influence curves for i.i.d. and pooled repeated measures data, respectively.
This package provides colour choice in information visualisation. It important in order to avoid being mislead by inherent bias in the used colour palette. This package provides access to the perceptually uniform and colour-blindness friendly palettes developed by Fabio Crameri and released under the "Scientific Colour-Maps" moniker. The package contains 24 different palettes and includes both diverging and sequential types.
An implementation of Bayesian model-averaged t-tests that allows users to draw inferences about the presence versus absence of an effect, variance heterogeneity, and potential outliers. The RoBTT
package estimates ensembles of models created by combining competing hypotheses and applies Bayesian model averaging using posterior model probabilities. Users can obtain model-averaged posterior distributions and inclusion Bayes factors, accounting for uncertainty in the data-generating process (Maier et al., 2024, <doi:10.3758/s13423-024-02590-5>). The package also provides a truncated likelihood version of the model-averaged t-test, enabling users to exclude potential outliers without introducing bias (Godmann et al., 2024, <doi:10.31234/osf.io/j9f3s>). Users can specify a wide range of informative priors for all parameters of interest. The package offers convenient functions for summary, visualization, and fit diagnostics.
Ranking of Alternatives through Functional mapping of criterion sub-intervals into a Single Interval Method is designed to perform multi-criteria decision-making (MCDM), developed by Mališa Žižovic in 2020 (<doi:10.3390/math8061015>). It calculates the final sorted rankings based on a decision matrix where rows represent alternatives and columns represent criteria. The method uses: - A numeric vector of weights for each criterion (the sum of weights must be 1). - A numeric vector of ideal values for each criterion. - A numeric vector of anti-ideal values for each criterion. - Numeric values representing the extent to which the ideal value is preferred over the anti-ideal value, and the extent to which the anti-ideal value is considered worse. The function standardizes the decision matrix, normalizes the data, applies weights, and returns the final sorted rankings.
Response surface designs with neighbour effects are suitable for experimental situations where it is expected that the treatment combination administered to one experimental unit may affect the response on neighboring units as well as the response on the unit to which it is applied (Dalal et al.,2025 <doi: 10.57805/revstat.v23i2.513>). Integrating these effects in the response surface model improves the experiment's precision (Jaggi, S., Sarika and Sharma, V.K. (2010)<doi:10.5555/20103265373>; Verma A., Jaggi S., Varghese, E.,Varghese, C.,Bhowmik, A., Datta, A. and Hemavathi M. (2021)<doi: 10.1080/03610918.2021.1890123>). This package includes sym()
, asym1()
, asym2()
, asym3()
and asym4()
functions that generates response surface designs which are rotatable under a polynomial model of a given order without interaction term incorporating neighbour effects.
Estimate the AUC using a variety of methods as follows: (1) frequentist nonparametric methods based on the Mann-Whitney statistic or kernel methods. (2) frequentist parametric methods using the likelihood ratio test based on higher-order asymptotic results, the signed log-likelihood ratio test, the Wald test, or the approximate t solution to the Behrens-Fisher problem. (3) Bayesian parametric MCMC methods.
Render SVG as interactive figures to display contextual information, with selectable and clickable user interface elements. These figures can be seamlessly integrated into rmarkdown and Quarto documents, as well as shiny applications, allowing manipulation of elements and reporting actions performed on them. Additional features include pan, zoom in/out functionality, and the ability to export the figures in SVG or PNG formats.
Bumblebee colonies grow during worker production, then decline after switching to production of reproductive individuals (drones and gynes). This package provides tools for modeling and visualizing this pattern by identifying a switchpoint with a growth rate before and a decline rate after the switchpoint. The mathematical models fit by bumbl are described in Crone and Williams (2016) <doi:10.1111/ele.12581>.