Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
PyNNDescent provides a Python implementation of Nearest Neighbor Descent for k-neighbor-graph construction and approximate nearest neighbor search.
A Python library for reading and writing GGUF & GGML format ML models.
CTranslate2 is a C++ and Python library for efficient inference with Transformer models.
The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU.
PyTorch Lightning is just organized PyTorch; Lightning disentangles PyTorch code to decouple the science from the engineering.
This package provides simple access speech to text for using in Linux without being tied to a desktop environment, using the vosk-api. The user configuration lets you manipulate text using Python string operations. It has zero overhead, as this relies on manual activation and there are no background processes. Dictation is accessed manually with nerd-dictation begin and nerd-dictation end commands.
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa and achieve state-of-the-art performance in various tasks. Text is embedded in vector space such that similar text are closer and can efficiently be found using cosine similarity.
This package provides easy access to pretrained models for more than 100 languages, fine-tuned for various use-cases.
Further, this framework allows an easy fine-tuning of custom embeddings models, to achieve maximal performance on your specific task.
TensorFlow is a flexible platform for building and training machine learning models. This package provides the "lite" variant for mobile devices.
OpenMM is a toolkit for molecular simulation. It can be used either as a stand-alone application for running simulations, or as a library you call from your own code.
OneAPI Deep Neural Network Library (oneDNN) is a cross-platform performance library of basic building blocks for deep learning applications.
FANN is a neural network library, which implements multilayer artificial neural networks in C with support for both fully connected and sparsely connected networks.
OpenFst is a library for constructing, combining, optimizing, and searching weighted finite-state transducers (FSTs).
This package provides simple access speech to text for using in Linux without being tied to a desktop environment, using the vosk-api. The user configuration lets you manipulate text using Python string operations. It has zero overhead, as this relies on manual activation and there are no background processes. Dictation is accessed manually with nerd-dictation begin and nerd-dictation end commands.
GPy is a Gaussian Process (GP) framework written in Python, from the Sheffield machine learning group. GPy implements a range of machine learning algorithms based on GPs.
This package provides easy download of thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
These models can be applied on:
Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages.
Images, for tasks like image classification, object detection, and segmentation.
Audio, for tasks like speech recognition and audio classification.
Transformer models can also perform tasks on several modalities combined, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
This package provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community. At the same time, each Python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them.
DMLC-Core is the backbone library to support all DMLC projects, offers the bricks to build efficient and scalable distributed machine learning libraries.
This package provides a fast (zero-copy) and safe (dedicated) format for storing tensors safely.
Scikit-learn provides simple and efficient tools for data mining and data analysis.
This package provides simple access speech to text for using in Linux without being tied to a desktop environment, using the vosk-api. The user configuration lets you manipulate text using Python string operations. It has zero overhead, as this relies on manual activation and there are no background processes. Dictation is accessed manually with nerd-dictation begin and nerd-dictation end commands.
LIBSVM is a machine learning library for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification.
PyTorch is a Python package that provides two high-level features:
tensor computation (like NumPy) with strong GPU acceleration;
deep neural networks (DNNs) built on a tape-based autograd system.
You can reuse Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.
Note: currently this package does not provide GPU support.
This package provides a Python library to easily read single characters and key strokes.
Autograd can automatically differentiate native Python and NumPy code. It can handle a large subset of Python's features, including loops, ifs, recursion and closures, and it can even take derivatives of derivatives of derivatives. It supports reverse-mode differentiation (a.k.a. backpropagation), which means it can efficiently take gradients of scalar-valued functions with respect to array-valued arguments, as well as forward-mode differentiation, and the two can be composed arbitrarily. The main intended application of Autograd is gradient-based optimization.
ONNX Runtime is a performance-focused complete scoring engine for Open Neural Network Exchange (ONNX) models, with an open extensible architecture to continually address the latest developments in AI and Deep Learning. ONNX Runtime stays up to date with the ONNX standard with complete implementation of all ONNX operators, and supports all ONNX releases (1.2+) with both future and backwards compatibility.
This library is used internally as header-only library by PyTorch.