linear ANOVA decomposition of Multivariate Designed Experiments implementation based on limma lmFit
. Features: i)Flexible formula type interface, ii) Fast limma based implementation, iii) p-values for each estimated coefficient levels in each factor, iv) F values for factor effects and v) plotting functions for PCA and PLS.
Takes as input an incomplete perturbation profile and differential gene expression in log odds and infers unobserved perturbations and augments observed ones. The inference is done by iteratively inferring a network from the perturbations and inferring perturbations from the network. The network inference is done by Nested Effects Models.
This package lets you create extra Analysis Results Data (ARD) summary objects. The package supplements the simple ARD functions from the cards
package, exporting functions to put statistical results in the ARD format. These objects are used and re-used to construct summary tables, visualizations, and written reports.
Users may want to align plots with associated information that requires axes to be exactly matched in subplots, e.g. hierarchical clustering with a heatmap. This package provides utilities to align associated subplots to a main plot at different sides (left, right, top and bottom) with axes exactly matched.
This package lets you construct Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Results Data objects. These objects are used and re-used to construct summary tables, visualizations, and written reports. The package also exports utilities for working with these objects and creating new Analysis Results Data objects.
This package provides a header only, C++11 interface to R's C interface. Compared to other approaches cpp11
strives to be safe against long jumps from the C API as well as C++ exceptions, conform to normal R function semantics and supports interaction with ALTREP
vectors.
Rsyslog offers high-performance, great security features and a modular design. While it started as a regular syslogd, rsyslog has evolved into a kind of swiss army knife of logging, being able to accept inputs from a wide variety of sources, transform them, and output the results to diverse destinations.
The rmspc package runs MSPC (Multiple Sample Peak Calling) software using R. The analysis of ChIP-seq
samples outputs a number of enriched regions (commonly known as "peaks"), each indicating a protein-DNA interaction or a specific chromatin modification. When replicate samples are analyzed, overlapping peaks are expected. This repeated evidence can therefore be used to locally lower the minimum significance required to accept a peak. MSPC uses combined evidence from replicated experiments to evaluate peak calling output, rescuing peaks, and reduce false positives. It takes any number of replicates as input and improves sensitivity and specificity of peak calling on each, and identifies consensus regions between the input samples.
Flat text files provide a robust, compressible, and portable way to store tables from databases. This package provides convenient functions for exporting tables from relational database connections into compressed text files and streaming those text files back into a database without requiring the whole table to fit in working memory.
This package provides a pipeable, transparent implementation of areal weighted interpolation with support for interpolating multiple variables in a single function call. These tools provide a full-featured workflow for validation and estimation that fits into both modern data management (e.g. tidyverse) and spatial data (e.g. sf) frameworks.
Divide taxonomic occurrence data into geographic regions of fair comparison, with three customisable methods to standardise area and extent. Calculate common biodiversity and range-size metrics on subsampled data. Background theory and practical considerations for the methods are described in Antell and others (2024) <doi:10.1017/pab.2023.36>.
Frailty Exponential Random Graph Models estimated through pseudo likelihood with frailty terms estimated using Stan as per Box-Steffensmeier et. al (2017) <doi:10.7910/DVN/K3D1M2>. Goodness of fit for Frailty Exponential Random Graph Models is also available, with easy visualizations for comparison to fit Exponential Random Graph Models.
Computes the functional tangential angle pseudo-depth and its robustified version from the paper by Kuhnt and Rehage (2016). See Kuhnt, S.; Rehage, A. (2016): An angle-based multivariate functional pseudo-depth for shape outlier detection, JMVA 146, 325-340, <doi:10.1016/j.jmva.2015.10.016> for details.
Open-source package for computing likelihood ratios in kinship testing and human identification cases. It has the core function of the software GENis, developed by Fundación Sadosky. It relies on a Bayesian Networks framework and is particularly well suited to efficiently perform large-size queries against databases of missing individuals.
This package provides functions for graph matching via nodes degree profiles are provided in this package. The models we can handle include Erdos-Renyi random graphs and stochastic block models(SBM). More details are in the reference paper: Yaofang Hu, Wanjie Wang and Yi Yu (2020) <arXiv:2006.03284>
.
Programmatic interface to the Harmonized World Soil Database HWSD web services (<https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247>). Allows for easy downloads of HWSD soil data directly to your R workspace or your computer. Routines for both single pixel data downloads and gridded data are provided.
Sieve semiparametric likelihood methods for analyzing interval-censored failure time data from an outcome-dependent sampling (ODS) design and from a case-cohort design. Zhou, Q., Cai, J., and Zhou, H. (2018) <doi:10.1111/biom.12744>; Zhou, Q., Zhou, H., and Cai, J. (2017) <doi:10.1093/biomet/asw067>.
Computes individual contributions to the overall Gini and Theil's T and Theil's L measures and their decompositions by groups such as race, gender, national origin, with the three functions of iGini()
, iTheiT()
, and iTheilL()
. For details, see Tim F. Liao (2019) <doi:10.1177/0049124119875961>.
Fit Bayesian stochastic block models (SBMs) and multi-level stochastic block models (MLSBMs) using efficient Gibbs sampling implemented in Rcpp'. The models assume symmetric, non-reflexive graphs (no self-loops) with unweighted, binary edges. Data are input as a symmetric binary adjacency matrix (SBMs), or list of such matrices (MLSBMs).
Framework for the simulation framework for the simulation of complex breeding programs and compare their economic and genetic impact. The package is also used as the background simulator for our a web-based interface <http:www.mobps.de>. Associated publication: Pook et al. (2020) <doi:10.1534/g3.120.401193>.
This package provides a complete and seamless Nonmem simulation interface within R. Turns Nonmem control streams into simulation control streams, executes them with specified simulation input data and returns the results. The simulation is performed by Nonmem', eliminating manual work and risks of re-implementation of models in other tools.
Package for a Network assisted algorithm for Epigenetic studies using mean and variance Combined signals: NEpiC
. NEpiC
combines both signals in mean and variance differences in methylation level between case and control groups searching for differentially methylated sub-networks (modules) using the protein-protein interaction network.
Quaternions and Octonions are four- and eight- dimensional extensions of the complex numbers. They are normed division algebras over the real numbers and find applications in spatial rotations (quaternions), and string theory and relativity (octonions). The quaternions are noncommutative and the octonions nonassociative. See the package vignette for more details.
Fits a model of Pavlovian conditioning phenomena, such as response extinction and spontaneous recovery, and partial reinforcement extinction effects. Competing proximal and distal reward predictions, computed using fast and slow learning rates, combine according to their uncertainties and the recency of information. The resulting mean prediction drives the response rate.