This package provides functions to calculate EBLUPs (Empirical Best Linear Unbiased Predictor) estimators and their MSEs (Mean Squared Errors). Estimators are based on an area-level linear mixed model introduced by Rao and Yu (1994) <doi:10.2307/3315407>. The REML (Residual Maximum Likelihood) method is used for fitting the model.
Calculating daily global solar radiation at horizontal surface using several well-known models (i.e. Angstrom-Prescott, Supit-Van Kappel, Hargreaves, Bristow and Campbell, and Mahmood-Hubbard), and model calibration based on ground-truth data, and (3) model auto-calibration. The FAO Penmann-Monteith equation to calculate evapotranspiration is also included.
The Bank of Canada updated their Valet API <https://www.bankofcanada.ca/valet/docs>, and no R client currently exists. This provides access to all of Valet's endpoints and serves responses in wide format easy for researchers to handle but also provides tools to access API responses as a list.
The package DAPAR is a Bioconductor distributed R package which provides all the necessary functions to analyze quantitative data from label-free proteomics experiments. Contrarily to most other similar R packages, it is endowed with rich and user-friendly graphical interfaces, so that no programming skill is required (see `Prostar` package).
This package provides tools to combine multidimensional arrays into a single array. This is a generalization of cbind
and rbind
. It works with vectors, matrices, and higher-dimensional arrays. It also provides the functions adrop
, asub
, and afill
for manipulating, extracting and replacing data in arrays.
This package provides datasets related to the Star Trek fictional universe and functions for working with the data. The package also provides access to real world datasets based on the televised series and other related licensed media productions. It interfaces with the Star Trek API (STAPI) (<http://stapi.co/>), Memory Alpha (<https://memory-alpha.fandom.com/wiki/Portal:Main>), and Memory Beta (<https://memory-beta.fandom.com/wiki/Main_Page>) to retrieve data, metadata and other information relating to Star Trek. It also contains several local datasets covering a variety of topics. The package also provides functions for working with data from other Star Trek-related R data packages containing larger datasets not stored in rtrek'.
Multi-block data analysis concerns the analysis of several sets of variables (blocks) observed on the same group of individuals. The main aims of the RGCCA package are: to study the relationships between blocks and to identify subsets of variables of each block which are active in their relationships with the other blocks. This package allows to (i) run R/SGCCA and related methods, (ii) help the user to find out the optimal parameters for R/SGCCA such as regularization parameters (tau or sparsity), (iii) evaluate the stability of the RGCCA results and their significance, (iv) build predictive models from the R/SGCCA. (v) Generic print()
and plot()
functions apply to all these functionalities.
This package provides a supportive collection of functions for pooled analysis of aggregate data. The current version supports users to test assumptions before relevant analysis of bias from study size and sequential analysis such as mentioned by Wetterslev, J., Jakobsen, J. C., & Gluud, C. (2017) <doi:10.1186/s12874-017-0315-7>.
This package provides a method for the Bayesian functional linear regression model (scalar-on-function), including two estimators of the coefficient function and an estimator of its support. A representation of the posterior distribution is also available. Grollemund P-M., Abraham C., Baragatti M., Pudlo P. (2019) <doi:10.1214/18-BA1095>.
Likelihood-based genome polarisation finds which alleles of genomic markers belong to which side of the barrier. Co-estimates which individuals belong to either side of the barrier and barrier strength. Uses expectation maximisation in likelihood framework. The method is described in Baird et al. (2023) <doi:10.1111/2041-210X.14010>.
An interface to explore, analyze, and visualize droplet digital PCR (ddPCR
) data in R. This is the first non-proprietary software for analyzing two-channel ddPCR
data. An interactive tool was also created and is available online to facilitate this analysis for anyone who is not comfortable with using R.
Fast computation of the distance covariance dcov and distance correlation dcor'. The computation cost is only O(n log(n)) for the distance correlation (see Chaudhuri, Hu (2019) <arXiv:1810.11332>
<doi:10.1016/j.csda.2019.01.016>). The functions are written entirely in C++ to speed up the computation.
Predictors can be converted to one or more numeric representations using a variety of methods. Effect encodings using simple generalized linear models <doi:10.48550/arXiv.1611.09477>
or nonlinear models <doi:10.48550/arXiv.1604.06737>
can be used. There are also functions for dimension reduction and other approaches.
An easy-to-use web client/wrapper for the Figma API <https://www.figma.com/developers/api>. It allows you to bring all data from a Figma file to your R session. This includes the data of all objects that you have drawn in this file, and their respective canvas/page metadata.
Improved version of GRIN software that streamlines its use in practice to analyze genomic lesion data, accelerate its computing, and expand its analysis capabilities to answer additional scientific questions including a rigorous evaluation of the association of genomic lesions with RNA expression. Pounds, Stan, et al. (2013) <DOI:10.1093/bioinformatics/btt372>.
This package provides functions for modeling and forecasting time series data. Forecasting is based on the innovations algorithm. A description of the innovations algorithm can be found in the textbook "Introduction to Time Series and Forecasting" by Peter J. Brockwell and Richard A. Davis. <https://link.springer.com/book/10.1007/b97391>.
Download data from Istat (Italian Institute of Statistics) database, both old and new provider (respectively, <http://dati.istat.it/> and <https://esploradati.istat.it/databrowser/>). Additional functions for manipulating data are provided. Moreover, a shiny application called shinyIstat
can be used to search, download and filter datasets in an easier way.
This package provides a streamlined cross-referencing system for R Markdown documents generated with knitr'. R Markdown is an authoring format for generating dynamic content from R. kfigr provides a hook for anchoring code chunks and a function to cross-reference document elements generated from said chunks, e.g. figures and tables.
Multiple contrast tests and simultaneous confidence intervals based on normal approximation. With implementations for binomial proportions in a 2xk setting (risk difference and odds ratio), poly-3-adjusted tumour rates, biodiversity indices (multinomial data) and expected values under lognormal assumption. Approximative power calculation for multiple contrast tests of binomial and Gaussian data.
Common mass spectrometry tools described in John Roboz (2013) <doi:10.1201/b15436>. It allows checking element isotopes, calculating (isotope labelled) exact monoisitopic mass, m/z values and mass accuracy, and inspecting possible contaminant mass peaks, examining possible adducts in electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) ion sources.
Access the Red List of Montane Tree Species of the Tropical Andes Tejedor Garavito et al.(2014, ISBN:978-1-905164-60-8). This package allows users to search for globally threatened tree species within the andean montane forests, including cloud forests and seasonal (wet) forests above 1500 m a.s.l.
Automatic time series modelling with neural networks. Allows fully automatic, semi-manual or fully manual specification of networks. For details of the specification methodology see: (i) Crone and Kourentzes (2010) <doi:10.1016/j.neucom.2010.01.017>; and (ii) Kourentzes et al. (2014) <doi:10.1016/j.eswa.2013.12.011>.
QuantLib
bindings are provided for R using Rcpp via an evolved version of the initial header-only Quantuccia project offering an subset of QuantLib
(now maintained separately just for the calendaring subset). See the included file AUTHORS for a full list of contributors to QuantLib
(and hence also Quantuccia').
Procedure to optimally split a dataset for training and testing. SPlit is based on the method of support points, which is independent of modeling methods. Please see Joseph and Vakayil (2021) <doi:10.1080/00401706.2021.1921037> for details. This work is supported by U.S. National Science Foundation grant DMREF-1921873.