Computes the functional tangential angle pseudo-depth and its robustified version from the paper by Kuhnt and Rehage (2016). See Kuhnt, S.; Rehage, A. (2016): An angle-based multivariate functional pseudo-depth for shape outlier detection, JMVA 146, 325-340, <doi:10.1016/j.jmva.2015.10.016> for details.
Open-source package for computing likelihood ratios in kinship testing and human identification cases. It has the core function of the software GENis, developed by Fundación Sadosky. It relies on a Bayesian Networks framework and is particularly well suited to efficiently perform large-size queries against databases of missing individuals.
This package provides functions for graph matching via nodes degree profiles are provided in this package. The models we can handle include Erdos-Renyi random graphs and stochastic block models(SBM). More details are in the reference paper: Yaofang Hu, Wanjie Wang and Yi Yu (2020) <arXiv:2006.03284>.
Programmatic interface to the Harmonized World Soil Database HWSD web services (<https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247>). Allows for easy downloads of HWSD soil data directly to your R workspace or your computer. Routines for both single pixel data downloads and gridded data are provided.
Sieve semiparametric likelihood methods for analyzing interval-censored failure time data from an outcome-dependent sampling (ODS) design and from a case-cohort design. Zhou, Q., Cai, J., and Zhou, H. (2018) <doi:10.1111/biom.12744>; Zhou, Q., Zhou, H., and Cai, J. (2017) <doi:10.1093/biomet/asw067>.
Computes individual contributions to the overall Gini and Theil's T and Theil's L measures and their decompositions by groups such as race, gender, national origin, with the three functions of iGini(), iTheiT(), and iTheilL(). For details, see Tim F. Liao (2019) <doi:10.1177/0049124119875961>.
Framework for the simulation framework for the simulation of complex breeding programs and compare their economic and genetic impact. The package is also used as the background simulator for our a web-based interface <http:www.mobps.de>. Associated publication: Pook et al. (2020) <doi:10.1534/g3.120.401193>.
Fit Bayesian stochastic block models (SBMs) and multi-level stochastic block models (MLSBMs) using efficient Gibbs sampling implemented in Rcpp'. The models assume symmetric, non-reflexive graphs (no self-loops) with unweighted, binary edges. Data are input as a symmetric binary adjacency matrix (SBMs), or list of such matrices (MLSBMs).
Package for a Network assisted algorithm for Epigenetic studies using mean and variance Combined signals: NEpiC. NEpiC combines both signals in mean and variance differences in methylation level between case and control groups searching for differentially methylated sub-networks (modules) using the protein-protein interaction network.
This package provides a complete and seamless Nonmem simulation interface within R. Turns Nonmem control streams into simulation control streams, executes them with specified simulation input data and returns the results. The simulation is performed by Nonmem', eliminating manual work and risks of re-implementation of models in other tools.
Quaternions and Octonions are four- and eight- dimensional extensions of the complex numbers. They are normed division algebras over the real numbers and find applications in spatial rotations (quaternions), and string theory and relativity (octonions). The quaternions are noncommutative and the octonions nonassociative. See the package vignette for more details.
This package provides a function for the estimation of parameters in a binary regression with the skew-probit link function. Naive MLE, Jeffrey type of prior and Cauchy prior type of penalization are implemented, as described in DongHyuk Lee and Samiran Sinha (2019+) <doi:10.1080/00949655.2019.1590579>.
The implementation of the algorithm for estimation of mutual information and channel capacity from experimental data by classification procedures (logistic regression). Technically, it allows to estimate information-theoretic measures between finite-state input and multivariate, continuous output. Method described in Jetka et al. (2019) <doi:10.1371/journal.pcbi.1007132>.
This package provides convenience functions to replace hyphen-minuses (ASCII 45) with proper minus signs (Unicode character 2212). The true minus matches the plus symbol in width, line thickness, and height above the baseline. It was designed for mathematics, looks better in presentation, and is understood properly by screen readers.
Conduct latent trajectory class analysis with longitudinal data. Our method supports longitudinal continuous, binary and count data. For more methodological details, please refer to Hart, K.R., Fei, T. and Hanfelt, J.J. (2020), Scalable and robust latent trajectory class analysis using artificial likelihood. Biometrics <doi:10.1111/biom.13366>.
An implementation of feature selection, weighting and ranking via simultaneous perturbation stochastic approximation (SPSA). The SPSA-FSR algorithm searches for a locally optimal set of features that yield the best predictive performance using some error measures such as mean squared error (for regression problems) and accuracy rate (for classification problems).
Get comments posted on YouTube videos, information on how many times a video has been liked, search for videos with particular content, and much more. You can also scrape captions from a few videos. To learn more about the YouTube API, see <https://developers.google.com/youtube/v3/>.
The BiSeq package provides useful classes and functions to handle and analyze targeted bisulfite sequencing (BS) data such as reduced-representation bisulfite sequencing (RRBS) data. In particular, it implements an algorithm to detect differentially methylated regions (DMRs). The package takes already aligned BS data from one or multiple samples.
GSNAP and GMAP are a pair of tools to align short-read data written by Tom Wu. This package provides convenience methods to work with GMAP and GSNAP from within R. In addition, it provides methods to tally alignment results on a per-nucleotide basis using the bam_tally tool.
This package provides functions for the analysis of data generated by the multiplex substrate profiling by mass spectrometry for proteases (MSP-MS) method. Data exported from upstream proteomics software is accepted as input and subsequently processed for analysis. Tools for statistical analysis, visualization, and interpretation of the data are provided.
This package provides tools to combine multidimensional arrays into a single array. This is a generalization of cbind and rbind. It works with vectors, matrices, and higher-dimensional arrays. It also provides the functions adrop, asub, and afill for manipulating, extracting and replacing data in arrays.
This package provides datasets related to the Star Trek fictional universe and functions for working with the data. The package also provides access to real world datasets based on the televised series and other related licensed media productions. It interfaces with the Star Trek API (STAPI) (<http://stapi.co/>), Memory Alpha (<https://memory-alpha.fandom.com/wiki/Portal:Main>), and Memory Beta (<https://memory-beta.fandom.com/wiki/Main_Page>) to retrieve data, metadata and other information relating to Star Trek. It also contains several local datasets covering a variety of topics. The package also provides functions for working with data from other Star Trek-related R data packages containing larger datasets not stored in rtrek'.
Multi-block data analysis concerns the analysis of several sets of variables (blocks) observed on the same group of individuals. The main aims of the RGCCA package are: to study the relationships between blocks and to identify subsets of variables of each block which are active in their relationships with the other blocks. This package allows to (i) run R/SGCCA and related methods, (ii) help the user to find out the optimal parameters for R/SGCCA such as regularization parameters (tau or sparsity), (iii) evaluate the stability of the RGCCA results and their significance, (iv) build predictive models from the R/SGCCA. (v) Generic print() and plot() functions apply to all these functionalities.
The functions are designed to calculate the most widely-used county-level variables in agricultural production or agricultural-climatic and weather analyses. To operate some functions in this package needs download of the bulk PRISM raster. See the examples, testing versions and more details from: <https://github.com/ysd2004/acdcR>.