Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides sample size and power calculations when the treatment time-lag effect is present and the lag duration is either homogeneous across the individual subject, or varies heterogeneously from individual to individual within a certain domain and following a specific pattern. The methods used are described in Xu, Z., Zhen, B., Park, Y., & Zhu, B. (2017) <doi:10.1002/sim.7157>.
Allows the computation of clustering coefficients for directed and weighted networks by using different approaches. It allows to compute clustering coefficients that are not present in igraph package. A description of clustering coefficients can be found in "Directed clustering in weighted networks: a new perspective", Clemente, G.P., Grassi, R. (2017), <doi:10.1016/j.chaos.2017.12.007>.
Predict future values with hybrid combinations of Pattern Sequence based Forecasting (PSF), Autoregressive Integrated Moving Average (ARIMA), Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode Decomposition (EEMD) methods based hybrid methods.
An interface to explore, analyze, and visualize droplet digital PCR (ddPCR) data in R. This is the first non-proprietary software for analyzing two-channel ddPCR data. An interactive tool was also created and is available online to facilitate this analysis for anyone who is not comfortable with using R.
Generalised model for population dynamics of invasive Aedes mosquitoes. Rationale and model structure are described here: Da Re et al. (2021) <doi:10.1016/j.ecoinf.2020.101180> and Da Re et al. (2022) <doi:10.1101/2021.12.21.473628>.
Computes the first stage GMM estimate of a dynamic linear model with p lags of the dependent variables.
Low level functions for implementing maximum likelihood estimating procedures for complex models using data cloning and Bayesian Markov chain Monte Carlo methods as described in Solymos 2010 <doi:10.32614/RJ-2010-011>. Sequential and parallel MCMC support for JAGS', WinBUGS', OpenBUGS', and Stan'.
This package provides a unified framework to building Area Deprivation Index (ADI), Social Vulnerability Index (SVI), and Neighborhood Deprivation Index (NDI) deprivation measures and accessing related data from the U.S. Census Bureau such as Gini coefficient data. Tools are also available for calculating percentiles, quantiles, and for creating clear map breaks for data visualization.
Client for programmatic access to the South Florida Water Management District's DBHYDRO database at <https://www.sfwmd.gov/science-data/dbhydro>, with functions for accessing hydrologic and water quality data.
By systematically aggregating and processing textual reports from earthquakes, floods, storms, wildfires, and other natural disasters, the framework enables a holistic assessment of crisis narratives. Intelligent cleaning and normalization techniques transform raw commentary into structured data, ensuring precise extraction of disaster-specific insights. Collective sentiments of affected communities are quantitatively scored and qualitatively categorized, providing a multifaceted view of societal responses under duress. Interactive geographic maps and temporal charts illustrate the evolution and spatial dispersion of emotional reactions and impact indicators.
Basic time series functionalities such as listing of missing values, application of arbitrary aggregation as well as rolling (asymmetric) window functions and automatic detection of periodicity. As it is mainly based on data.table', it is fast and (in combination with the R6 package) offers reference semantics. In addition to its native R6 interface, it provides an S3 interface for those who prefer the latter. Finally yet importantly, its functional approach allows for incorporating functionalities from many other packages.
Cancer genomes contain large numbers of somatic alterations but few genes drive tumor development. Identifying cancer driver genes is critical for precision oncology. Most of current approaches either identify driver genes based on mutational recurrence or using estimated scores predicting the functional consequences of mutations. driveR is a tool for personalized or batch analysis of genomic data for driver gene prioritization by combining genomic information and prior biological knowledge. As features, driveR uses coding impact metaprediction scores, non-coding impact scores, somatic copy number alteration scores, hotspot gene/double-hit gene condition, phenolyzer gene scores and memberships to cancer-related KEGG pathways. It uses these features to estimate cancer-type-specific probability for each gene of being a cancer driver using the related task of a multi-task learning classification model. The method is described in detail in Ulgen E, Sezerman OU. 2021. driveR: driveR: a novel method for prioritizing cancer driver genes using somatic genomics data. BMC Bioinformatics <doi:10.1186/s12859-021-04203-7>.
Test for no adverse shift in two-sample comparison when we have a training set, the reference distribution, and a test set. The approach is flexible and relies on a robust and powerful test statistic, the weighted AUC. Technical details are in Kamulete, V. M. (2021) <arXiv:1908.04000>. Modern notions of outlyingness such as trust scores and prediction uncertainty can be used as the underlying scores for example.
Data screening is an important first step of any statistical analysis. dataReporter auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset. See Petersen AH, Ekstrøm CT (2019). "dataMaid: Your Assistant for Documenting Supervised Data Quality Screening in R." _Journal of Statistical Software_, *90*(6), 1-38 <doi:10.18637/jss.v090.i06> for more information.
Tests whether multivariate ordinal data may stem from discretizing a multivariate normal distribution. The test is described by Foldnes and Grønneberg (2019) <doi:10.1080/10705511.2019.1673168>. In addition, an adjusted polychoric correlation estimator is provided that takes marginal knowledge into account, as described by Grønneberg and Foldnes (2022) <doi:10.1037/met0000495>.
This package provides methods for distance covariance and distance correlation (Szekely, et al. (2007) <doi:10.1214/009053607000000505>), generalized version thereof (Sejdinovic, et al. (2013) <doi:10.1214/13-AOS1140>) and corresponding tests (Berschneider, Bottcher (2018) <arXiv:1808.07280>. Distance standard deviation methods (Edelmann, et al. (2020) <doi:10.1214/19-AOS1935>) and distance correlation methods for survival endpoints (Edelmann, et al. (2021) <doi:10.1111/biom.13470>) are also included.
This package contains data sets, examples and software from the Second Edition of "Design of Observational Studies"; see Rosenbaum, P.R. (2010) <doi:10.1007/978-1-4419-1213-8>.
Learning and inference over dynamic Bayesian networks of arbitrary Markovian order. Extends some of the functionality offered by the bnlearn package to learn the networks from data and perform exact inference. It offers three structure learning algorithms for dynamic Bayesian networks: Trabelsi G. (2013) <doi:10.1007/978-3-642-41398-8_34>, Santos F.P. and Maciel C.D. (2014) <doi:10.1109/BRC.2014.6880957>, Quesada D., Bielza C. and Larrañaga P. (2021) <doi:10.1007/978-3-030-86271-8_14>. It also offers the possibility to perform forecasts of arbitrary length. A tool for visualizing the structure of the net is also provided via the visNetwork package.
Interactively train neural networks on Numerai, <https://numer.ai/>, data. Generate tournament predictions and write them to a CSV.
This package provides functions for the calculation and plotting of synchrony in tree growth from tree-ring width chronologies (TRW index). It combines variance-covariance (VCOV) mixed modelling with functions that quantify the degree to which the TRW chronologies contain a common temporal signal. It also implements temporal trends in spatial synchrony using a moving window. These methods can also be used with other kind of ecological variables that have temporal autocorrelation corrected.
Analysis of historical non-decimal currencies and value systems that use tripartite or tetrapartite systems such as pounds, shillings, and pence. It introduces new vector classes to represent non-decimal currencies, making them compatible with numeric classes, and provides functions to work with these classes in data frames in the context of double-entry bookkeeping.
Solves ordinary and delay differential equations, where the objective function is written in either R or C. Suitable only for non-stiff equations, the solver uses a Dormand-Prince method that allows interpolation of the solution at any point. This approach is as described by Hairer, Norsett and Wanner (1993) <ISBN:3540604529>. Support is also included for iterating difference equations.
Fast functions for effective sample size, weighted multivariate mean, variance, and quantile computation, and weight diagnostic plot for generic importance sampling type or other probability weighted samples.
Plan optimal sample size allocation and go/no-go decision rules for phase II/III drug development programs with time-to-event, binary or normally distributed endpoints when assuming fixed treatment effects or a prior distribution for the treatment effect, using methods from Kirchner et al. (2016) <doi:10.1002/sim.6624> and Preussler (2020). Optimal is in the sense of maximal expected utility, where the utility is a function taking into account the expected cost and benefit of the program. It is possible to extend to more complex settings with bias correction (Preussler S et al. (2020) <doi:10.1186/s12874-020-01093-w>), multiple phase III trials (Preussler et al. (2019) <doi:10.1002/bimj.201700241>), multi-arm trials (Preussler et al. (2019) <doi:10.1080/19466315.2019.1702092>), and multiple endpoints (Kieser et al. (2018) <doi:10.1002/pst.1861>).