This package provides tools for analysing multivariate time series with wavelets. This includes: simulation of a multivariate locally stationary wavelet (mvLSW
) process from a multivariate evolutionary wavelet spectrum (mvEWS
); estimation of the mvEWS
, local coherence and local partial coherence. See Park, Eckley and Ombao (2014) <doi:10.1109/TSP.2014.2343937> for details.
This package provides tools for data analysis with multivariate Bayesian structural time series (MBSTS) models. Specifically, the package provides facilities for implementing general structural time series models, flexibly adding on different time series components (trend, season, cycle, and regression), simulating them, fitting them to multivariate correlated time series data, conducting feature selection on the regression component.
An S4 implementation of the unbiased extension of the model- assisted synthetic-regression estimator proposed by Mandallaz (2013) <DOI:10.1139/cjfr-2012-0381>, Mandallaz et al. (2013) <DOI:10.1139/cjfr-2013-0181> and Mandallaz (2014) <DOI:10.1139/cjfr-2013-0449>. It yields smaller variances than the standard bias correction, the generalised regression estimator.
Multiple imputation using XGBoost', subsampling, and predictive mean matching as described in Deng and Lumley (2023) <doi:10.1080/10618600.2023.2252501>. The package supports various types of variables, offers flexible settings, and enables saving an imputation model to impute new data. Data processing and memory usage have been optimised to speed up the imputation process.
Permutation based non-parametric analysis of CRISPR screen data. Details about this algorithm are published in the following paper published on BMC genomics, Jia et al. (2017) <doi:10.1186/s12864-017-3938-5>: A permutation-based non-parametric analysis of CRISPR screen data. Please cite this paper if you use this algorithm for your paper.
Analysis Results Standard (ARS), a foundational standard by CDISC (Clinical Data Interchange Standards Consortium), provides a logical data model for metadata describing all components to calculate Analysis Results. <https://www.cdisc.org/standards/foundational/analysis-results-standard> Using siera package, ARS metadata is ingested (JSON or Excel format), producing programmes to generate Analysis Results Datasets (ARDs).
Interval fusion and selection procedures for regression with functional inputs. Methods include a semiparametric approach based on Sliced Inverse Regression (SIR), as described in <doi:10.1007/s11222-018-9806-6> (standard ridge and sparse SIR are also included in the package) and a random forest based approach, as described in <doi:10.1002/sam.11705>.
This package creates images that are the proper size for social media. Beautiful plots, charts and graphs wither and die if they are not shared. Social media is perfect for this but every platform has its own image dimensions. With smpic you can easily save your plots with the exact dimensions needed for the different platforms.
This package provides functions for modeling Soil Organic Matter decomposition in terrestrial ecosystems with linear and nonlinear systems of differential equations. The package implements models according to the compartmental system representation described in Sierra and others (2012) <doi:10.5194/gmd-5-1045-2012> and Sierra and others (2014) <doi:10.5194/gmd-7-1919-2014>.
The spork syntax describes label formatting concisely, supporting mixed nesting of subscripts and superscripts to arbitrary depth. It intends to be easy to read and write in plain text, and easy to convert to equivalent presentations in plotmath', latex', and html'. Greek symbols and a multiplication symbol are explicitly supported. See ?as_spork and ?as_previews.
Package of wrapper functions using R6 class to send requests to Microsoft Teams <https://products.office.com/en-us/microsoft-teams/group-chat-software> through webhooks. When you need to share information or data from R to Teams', rather than copying/pasting, you can use this package to send well-formatted output from multiple R objects.
This package creates simulated clinical trial data with realistic correlation structures and assumed efficacy levels by using a tilted bootstrap resampling approach. Samples are drawn from observed data with some samples appearing more frequently than others. May also be used for simulating from a joint Bayesian distribution along with clinical trials based on the Bayesian distribution.
Compare differential gene expression results with those from known cellular perturbations (such as gene knock-down, overexpression or small molecules) derived from the Connectivity Map. Such analyses allow not only to infer the molecular causes of the observed difference in gene expression but also to identify small molecules that could drive or revert specific transcriptomic alterations.
The R implementation of mCOPA
package published by Wang et al. (2012). Oppar provides methods for Cancer Outlier profile Analysis. Although initially developed to detect outlier genes in cancer studies, methods presented in oppar can be used for outlier profile analysis in general. In addition, tools are provided for gene set enrichment and pathway analysis.
The package provides `rlang` data masks for the SummarizedExperiment
class. The enables the evaluation of unquoted expression in different contexts of the SummarizedExperiment
object with optional access to other contexts. The goal for `plyxp` is for evaluation to feel like a data.frame object without ever needing to unwind to a rectangular data.frame.
This R package is for multi-sample transcript discovery and quantification using long read RNA-Seq data. You can use bambu after read alignment to obtain expression estimates for known and novel transcripts and genes. The output from bambu can directly be used for visualisation and downstream analysis, such as differential gene expression or transcript usage.
This package provides methods for spatial data analysis, especially raster data. The included methods allow for low-level data manipulation as well as high-level global, local, zonal, and focal computation. The predict and interpolate methods facilitate the use of regression type (interpolation, machine learning) models for spatial prediction. Processing of very large files is supported.
This package performs both classical and robust panel clustering by applying Principal Component Analysis (PCA) for dimensionality reduction and clustering via standard K-Means or Trimmed K-Means. The method is designed to ensure stable and reliable clustering, even in the presence of outliers. Suitable for analyzing panel data in domains such as economic research, financial time-series, healthcare analytics, and social sciences. The package allows users to choose between classical K-Means for standard clustering and Trimmed K-Means for robust clustering, making it a flexible tool for various applications. For this package, we have benefited from the studies Rencher (2003), Wang and Lu (2021) <DOI:10.25236/AJBM.2021.031018>, Cuesta-Albertos et al. (1997) <https://www.jstor.org/stable/2242558?seq=1>.
This package provides several cubic spline interpolation methods of H. Akima for irregular and regular gridded data are available through this package, both for the bivariate case and univariate case. Linear interpolation of irregular gridded data is also covered. A bilinear interpolator for regular grids was also added for comparison with the bicubic interpolator on regular grids.
This package provides functions to perform statistical inference in the balanced one-way ANOVA model with a random factor: confidence intervals, prediction interval, and Weerahandi generalized pivotal quantities. References: Burdick & Graybill (1992, ISBN-13: 978-0824786441); Weerahandi (1995) <doi:10.1007/978-1-4612-0825-9>; Lin & Liao (2008) <doi:10.1016/j.jspi.2008.01.001>.
An interface to the ArcGIS
arcpy and arcgis python API <https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/arcgis-api-for-python.htm>. Provides various tools for installing and configuring a Conda environment for accessing ArcGIS
geoprocessing functions. Helper functions for manipulating and converting ArcGIS
objects from R are also provided.
Simultaneously clusters the Periodontal diseases (PD) patients and their tooth sites after taking the patient- and site-level covariates into consideration. BAREB uses the determinantal point process (DPP) prior to induce diversity among different biclusters to facilitate parsimony and interpretability. Essentially, BAREB is a cluster-wise linear model based on Yuliang (2020) <doi:10.1002/sim.8536>.
Encryption wrappers, using low-level support from sodium and openssl'. cyphr tries to smooth over some pain points when using encryption within applications and data analysis by wrapping around differences in function names and arguments in different encryption providing packages. It also provides high-level wrappers for input/output functions for seamlessly adding encryption to existing analyses.
Collection of indices and tools relating to cardiovascular, nephrology, and hepatic research that aid epidemiological chort or retrospective chart review with big data. All indices and tools take commonly used lab values and patient demographics and measurements to compute various risk and predictive values for survival. References to original literature and validation contained in each function documentation.