Efficient procedures for fitting the regularization path for linear, binomial, multinomial, Ising and Potts models with lasso, group lasso or column lasso(only for multinomial) penalty. The package uses Linearized Bregman Algorithm to solve the regularization path through iterations. Bregman Inverse Scale Space Differential Inclusion solver is also provided for linear model with lasso penalty.
Estimation of Latent Order Logistic (LOLOG) Models for Networks. LOLOGs are a flexible and fully general class of statistical graph models. This package provides functions for performing MOM, GMM and variational inference. Visual diagnostics and goodness of fit metrics are provided. See Fellows (2018) <arXiv:1804.04583>
for a detailed description of the methods.
This package provides tools to handle, manipulate and explore trajectory data, with an emphasis on data from tracked animals. The package is designed to support large studies with several million location records and keep track of units where possible. Data import directly from movebank <https://www.movebank.org/cms/movebank-main> and files is facilitated.
Generalized Egger tests for detecting publication bias in meta-analysis for diagnostic accuracy test (Noma (2020) <doi:10.1111/biom.13343>, Noma (2022) <doi:10.48550/arXiv.2209.07270>
). These publication bias tests are generally more powerful compared with the conventional univariate publication bias tests and can incorporate correlation information between the outcome variables.
The main functions perform mixed models analysis by least squares or REML by adding the function r()
to formulas of lm()
and glm()
. A collection of text-book statistics for higher education is also included, e.g. modifications of the functions lm()
, glm()
and associated summaries from the package stats'.
Create and integrate thematic maps in your workflow. This package helps to design various cartographic representations such as proportional symbols, choropleth or typology maps. It also offers several functions to display layout elements that improve the graphic presentation of maps (e.g. scale bar, north arrow, title, labels). mapsf maps sf objects on base graphics.
Analyzing regression data with many and/or highly collinear predictor variables, by simultaneously reducing the predictor variables to a limited number of components and regressing the criterion variables on these components (de Jong S. & Kiers H. A. L. (1992) <doi:10.1016/0169-7439(92)80100-I>). Several rotation and model selection options are provided.
Implementation of small area estimation (Fay-Herriot model) with EBLUP (Empirical Best Linear Unbiased Prediction) Approach for non-sampled area estimation by adding cluster information and assuming that there are similarities among particular areas. See also Rao & Molina (2015, ISBN:978-1-118-73578-7) and Anisa et al. (2013) <doi:10.9790/5728-10121519>.
Facilitates extraction of geospatial data from the Office for National Statistics Open Geography and nomis Application Programming Interfaces (APIs). Simplifies process of querying nomis datasets <https://www.nomisweb.co.uk/> and extracting desired datasets in dataframe format. Extracts area shapefiles at chosen resolution from Office for National Statistics Open Geography <https://geoportal.statistics.gov.uk/>.
This package provides an imputation pipeline for single-cell RNA sequencing data. The scISR
method uses a hypothesis-testing technique to identify zero-valued entries that are most likely affected by dropout events and estimates the dropout values using a subspace regression model (Tran et.al. (2022) <DOI:10.1038/s41598-022-06500-4>).
This package provides a spectral framework to map quantitative trait loci (QTLs) affecting joint differential networks of gene co-Expression. Test the equivalence among multiple biological networks via spectral statistics. See reference Hu, J., Weber, J. N., Fuess, L. E., Steinel, N. C., Bolnick, D. I., & Wang, M. (2025) <doi:10.1371/journal.pcbi.1012953>.
It contains functions to estimate multivariate Student's t dynamic and static regression models for given degrees of freedom and lag length. Users can also specify the trends and dummies of any kind in matrix form. Poudyal, N., and Spanos, A. (2022) <doi:10.3390/econometrics10020017>. Spanos, A. (1994) <http://www.jstor.org/stable/3532870>.
This package provides a set of functions and datasets implementation of small area estimation when auxiliary variable is measured with error. These functions provide a empirical best linear unbiased prediction (EBLUP) estimator and mean squared error (MSE) estimator of the EBLUP. These models were developed by Ybarra and Lohr (2008) <doi:10.1093/biomet/asn048>.
Integrates several popular high-dimensional methods based on Linear Discriminant Analysis (LDA) and provides a comprehensive and user-friendly toolbox for linear, semi-parametric and tensor-variate classification as mentioned in Yuqing Pan, Qing Mai and Xin Zhang (2019) <arXiv:1904.03469>
. Functions are included for covariate adjustment, model fitting, cross validation and prediction.
Fetch data from the <https://www.justice.gov/developer/api-documentation/api_v1> API such as press releases, blog entries, and speeches. Optional parameters allow users to specify the number of results starting from the earliest or latest entries, and whether these results contain keywords. Data is cleaned for analysis and returned in a dataframe.
This package implements a metabolic network analysis pipeline to identify an active metabolic module based on high throughput data. The pipeline takes as input transcriptional and/or metabolic data and finds a metabolic subnetwork (module) most regulated between the two conditions of interest. The package further provides functions for module post-processing, annotation and visualization.
This package provides a seamless interface to the MEME Suite family of tools for motif analysis. memes provides data aware utilities for using GRanges objects as entrypoints to motif analysis, data structures for examining & editing motif lists, and novel data visualizations. memes functions and data structures are amenable to both base R and tidyverse workflows.
This package implements a general purpose gene set analysis method called PADOG that downplays the importance of genes that apear often accross the sets of genes to be analyzed. The package provides also a benchmark for gene set analysis methods in terms of sensitivity and ranking using 24 public datasets from KEGGdzPathwaysGEO
package.
The package offers statistical tests based on the 2-Wasserstein distance for detecting and characterizing differences between two distributions given in the form of samples. Functions for calculating the 2-Wasserstein distance and testing for differential distributions are provided, as well as a specifically tailored test for differential expression in single-cell RNA sequencing data.
The method models RNA-seq reads using a mixture of 3 beta-binomial distributions to generate posterior probabilities for genotyping bi-allelic single nucleotide polymorphisms. Elena Vigorito, Anne Barton, Costantino Pitzalis, Myles J. Lewis and Chris Wallace (2023) <doi:10.1093/bioinformatics/btad393> "BBmix: a Bayesian beta-binomial mixture model for accurate genotyping from RNA-sequencing.".
Este pacote traduz os seguintes conjuntos de dados: airlines', airports', ames_raw', AwardsManagers
', babynames', Batting', diamonds', faithful', fueleconomy', Fielding', flights', gapminder', gss_cat', iris', Managers', mpg', mtcars', atmos', penguins', People, Pitching', pixarfilms','planes', presidential', table1', table2', table3', table4a', table4b', table5', vehicles', weather', who'. English: It provides a Portuguese translated version of the datasets listed above.
This package provides functions to compute state-specific and marginal life expectancies. The computation is based on a fitted continuous-time multi-state model that includes an absorbing death state; see Van den Hout (2017, ISBN:9781466568402). The fitted multi-state model model should be estimated using the msm package using age as the time-scale.
Analysis of Bayesian adaptive enrichment clinical trial using Free-Knot Bayesian Model Averaging (FK-BMA) method of Maleyeff et al. (2024) for Gaussian data. Maleyeff, L., Golchi, S., Moodie, E. E. M., & Hudson, M. (2024) "An adaptive enrichment design using Bayesian model averaging for selection and threshold-identification of predictive variables" <doi:10.1093/biomtc/ujae141>.
Given a set of parameters describing model dynamics and a corresponding cost function, FAMoS
performs a dynamic forward-backward model selection on a specified selection criterion. It also applies a non-local swap search method. Works on any cost function. For detailed information see Gabel et al. (2019) <doi:10.1371/journal.pcbi.1007230>.