This package provides a framework is provided to develop R packages using Rust <https://www.rust-lang.org/> with minimal overhead, and more wrappers are easily added. Help is provided to use Cargo <https://doc.rust-lang.org/cargo/> in a manner consistent with CRAN policies. Rust code can also be embedded directly in an R script. The package is not official, affiliated with, nor endorsed by the Rust project.
Features tools for exploring congruent phylogenetic birth-death models. It can construct the pulled speciation- and net-diversification rates from a reference model. Given alternative speciation- or extinction rates, it can construct new models that are congruent with the reference model. Functionality is included to sample new rate functions, and to visualize the distribution of one congruence class. See also Louca & Pennell (2020) <doi:10.1038/s41586-020-2176-1>.
This package provides time series regression models with one predictor using finite distributed lag models, polynomial (Almon) distributed lag models, geometric distributed lag models with Koyck transformation, and autoregressive distributed lag models. It also consists of functions for computation of h-step ahead forecasts from these models. See Demirhan (2020)(<doi:10.1371/journal.pone.0228812>) and Baltagi (2011)(<doi:10.1007/978-3-642-20059-5>) for more information.
As in music, a fugue statistic repeats a theme in small variations. Here, the psi-function that defines an m-statistic is slightly altered to maintain the same design sensitivity in matched sets of different sizes. The main functions in the package are sen()
and senCI()
. For sensitivity analyses for m-statistics, see Rosenbaum (2007) Biometrics 63 456-464 <doi:10.1111/j.1541-0420.2006.00717.x>.
This package provides a comprehensive suite of functions and RStudio Add-ins leveraging the capabilities of open-source Large Language Models (LLMs) to support R developers. These functions offer a range of utilities, including text rewriting, translation, and general query capabilities. Additionally, the programming-focused functions provide assistance with debugging, translating, commenting, documenting, and unit testing code, as well as suggesting variable and function names, thereby streamlining the development process.
This package provides function to read data from the Igor Pro data analysis program by Wavemetrics'. The data formats supported are Igor packed experiment format ('pxp') and Igor binary wave ('ibw'). See: <https://www.wavemetrics.com/> for details. Also includes functions to load special pxp files produced by the Igor Pro Neuromatic and Nclamp packages for recording and analysing neuronal data. See <https://github.com/SilverLabUCL/NeuroMatic>
for details.
This package provides a systematic biology tool was developed to identify dysregulated miRNAs
via a miRNA-miRNA
interaction network. IDMIR first constructed a weighted miRNA
interaction network through integrating miRNA-target
interaction information, molecular function data from Gene Ontology (GO) database and gene transcriptomic data in specific-disease context, and then, it used a network propagation algorithm on the network to identify significantly dysregulated miRNAs
.
Computing and plotting joint confidence regions and intervals. Regions include classical ellipsoids, minimum-volume or minimum-length regions, and an empirical Bayes region. Intervals include the TOST procedure with ordinary or expanded intervals and a fixed-sequence procedure. Such regions and intervals are useful e.g., for the assessment of multi-parameter (bio-)equivalence. Joint confidence regions for the mean and variance of a normal distribution are available as well.
The reference implementation of model equations and default parameters for the toxicokinetic-toxicodynamic (TKTD) model of the Lemna (duckweed) aquatic plant. Lemna is a standard test macrophyte used in ecotox effect studies. The model was described and published by the SETAC Europe Interest Group Effect Modeling. It is a refined description of the Lemna TKTD model published by Schmitt et al. (2013) <doi:10.1016/j.ecolmodel.2013.01.017>.
Enables users to handle the dataset cleaning for conducting specific analyses with the log files from two international educational assessments: the Programme for International Student Assessment (PISA, <https://www.oecd.org/pisa/>) and the Programme for the International Assessment of Adult Competencies (PIAAC, <https://www.oecd.org/skills/piaac/>). An illustration of the analyses can be found on the LOGAN Shiny app (<https://loganpackage.shinyapps.io/shiny/>) on your browser.
This package provides a set of functions for analyzing the structure of forests based on the leaf area density (LAD) and leaf area index (LAI) measures calculated from Airborne Laser Scanning (ALS), i.e., scanning lidar (Light Detection and Ranging) data. The methodology is discussed and described in Almeida et al. (2019) <doi:10.3390/rs11010092> and Stark et al. (2012) <doi:10.1111/j.1461-0248.2012.01864.x>.
This package provides functionality to generate compound optimal designs for targeting the multiple experimental objectives directly, ensuring that the full set of research questions is answered as economically as possible. Designs can be found using point or coordinate exchange algorithms combining estimation, inference and lack-of-fit criteria that account for model inadequacy. Details and examples are given by Koutra et al. (2024) <doi:10.48550/arXiv.2412.17158>
.
This package implements linear and generalized linear models for provider profiling, incorporating both fixed and random effects. For large-scale providers, the linear profiled-based method and the SerBIN
method for binary data reduce the computational burden. Provides post-modeling features, such as indirect and direct standardization measures, hypothesis testing, confidence intervals, and post-estimation visualization. For more information, see Wu et al. (2022) <doi:10.1002/sim.9387>.
The Swash-Backwash Model for the Single Epidemic Wave was developed by Cliff and Haggett (2006) <doi:10.1007/s10109-006-0027-8> to model the velocity of spread of infectious diseases across space. This package enables the calculation of the Swash-Backwash Model for user-supplied panel data on regional infections. The package also provides additional functions for bootstrap confidence intervals, country comparison, visualization of results, and data management.
Fit, compare, and visualize Bayesian graphical vector autoregressive (GVAR) network models using Stan'. These models are commonly used in psychology to represent temporal and contemporaneous relationships between multiple variables in intensive longitudinal data. Fitted models can be compared with a test based on matrix norm differences of posterior point estimates to quantify the differences between two estimated networks. See also Siepe, Kloft & Heck (2024) <doi:10.31234/osf.io/uwfjc>.
The "Vertical and Horizontal Inheritance Consistence Analysis" method is described in the following publication: "VHICA: a new method to discriminate between vertical and horizontal transposon transfer: application to the mariner family within Drosophila" by G. Wallau. et al. (2016) <DOI:10.1093/molbev/msv341>. The purpose of the method is to detect horizontal transfers of transposable elements, by contrasting the divergence of transposable element sequences with that of regular genes.
Edit XMP metadata <https://en.wikipedia.org/wiki/Extensible_Metadata_Platform> in a variety of media file formats as well as edit bookmarks (aka outline aka table of contents) and documentation info entries in pdf files. Can detect and use a variety of command-line tools to perform these operations such as exiftool <https://exiftool.org/>, ghostscript <https://www.ghostscript.com/>, and/or pdftk <https://gitlab.com/pdftk-java/pdftk>.
SPAMS (SPArse Modeling Software) is an optimization toolbox for solving various sparse estimation problems. It includes tools for the following problems:
Dictionary learning and matrix factorization (NMF, sparse principle component analysis (PCA), ...)
Solving sparse decomposition problems with LARS, coordinate descent, OMP, SOMP, proximal methods
Solving structured sparse decomposition problems (l1/l2, l1/linf, sparse group lasso, tree-structured regularization, structured sparsity with overlapping groups,...).
tidyr is a reframing of the reshape2 package designed to accompany the tidy data framework, and to work hand-in-hand with magrittr and dplyr to build a solid pipeline for data analysis. It is designed specifically for tidying data, not the general reshaping that reshape2 does, or the general aggregation that reshape did. In particular, built-in methods only work for data frames, and tidyr provides no margins or aggregation.
This package provides functions to perform the fitting of an adaptive mixture of Student-t distributions to a target density through its kernel function as described in Ardia et al. (2009) <doi:10.18637/jss.v029.i03>. The mixture approximation can then be used as the importance density in importance sampling or as the candidate density in the Metropolis-Hastings algorithm to obtain quantities of interest for the target density itself.
Directed Dependence Coefficient (didec) is a measure of directed dependence. Multivariate Feature Ordering by Conditional Independence (MFOCI) is a variable selection algorithm based on didec. Hierarchical Variable Clustering (VarClustPartition
) is a variable clustering method based on didec. For more information, see the paper by Ansari and Fuchs (2024, <doi:10.48550/arXiv.2212.01621>
), and the paper by Fuchs and Wang (2024, <doi:10.1016/j.ijar.2024.109185>).
Estimate ecosystem metabolism in a Bayesian framework for individual water quality monitoring stations with continuous dissolved oxygen time series. A mass balance equation is used that provides estimates of parameters for gross primary production, respiration, and gas exchange. Methods adapted from Grace et al. (2015) <doi:10.1002/lom3.10011> and Wanninkhof (2014) <doi:10.4319/lom.2014.12.351>. Details in Beck et al. (2024) <doi:10.1002/lom3.10620>.
Computes maximum mean discrepancy two-sample test for univariate data using the Laplacian kernel, as described in Bodenham and Kawahara (2023) <doi:10.1007/s11222-023-10271-x>. The p-value is computed using permutations. Also includes implementation for computing the robust median difference statistic Q_n from Croux and Rousseeuw (1992) <doi:10.1007/978-3-662-26811-7_58> based on Johnson and Mizoguchi (1978) <doi:10.1137/0207013>.
This package performs hypothesis testing for general block designs with empirical likelihood. The core computational routines are implemented using the Eigen C++ library and RcppEigen
interface, with OpenMP
for parallel computation. Details of the methods are given in Kim, MacEachern
, and Peruggia (2023) <doi:10.1080/10485252.2023.2206919>. This work was supported by the U.S. National Science Foundation under Grants No. SES-1921523 and DMS-2015552.