Use frequentist and Bayesian methods to estimate parameters from a binary outcome misclassification model. These methods correct for the problem of "label switching" by assuming that the sum of outcome sensitivity and specificity is at least 1. A description of the analysis methods is available in Hochstedler and Wells (2023) <doi:10.48550/arXiv.2303.10215>
.
Provee una versión traducida de los siguientes conjuntos de datos: airlines', airports', AwardsManagers
', babynames', Batting', credit_data', diamonds', faithful', fueleconomy', Fielding', flights', gapminder', gss_cat', iris', Managers', mpg', mtcars', atmos', palmerpenguins', People, Pitching', planes', presidential', table1', table2', table3', table4a', table4b', table5', vehicles', weather', who'. English: It provides a Spanish translated version of the datasets listed above.
Use numerical optimization to fit ordinary differential equations (ODEs) to time series data to examine the dynamic relationships between variables or the characteristics of a dynamical system. It can now be used to estimate the parameters of ODEs up to second order, and can also apply to multilevel systems. See <https://github.com/yueqinhu/defit> for details.
This package provides several validator functions for checking if arguments passed by users have valid types, lengths, etc. and for generating informative and well-formatted error messages in a consistent style. Also provides tools for users to create their own validator functions. The error message style used is adopted from <https://style.tidyverse.org/error-messages.html>.
This package provides a collection of commonly used univariate and multivariate time series forecasting models including automatically selected exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models. These models work within the fable framework provided by the fabletools package, which provides the tools to evaluate, visualise, and combine models in a workflow consistent with the tidyverse.
Weighted-L2 FPOP Maidstone et al. (2017) <doi:10.1007/s11222-016-9636-3> and pDPA/FPSN
Rigaill (2010) <arXiv:1004.0887>
algorithm for detecting multiple changepoints in the mean of a vector. Also includes a few model selection functions using Lebarbier (2005) <doi:10.1016/j.sigpro.2004.11.012> and the capsushe package.
Use Rmarkdown First method to build your package. Start your package with documentation, functions, examples and tests in the same unique file. Everything can be set from the Rmarkdown template file provided in your project, then inflated as a package. Inflating the template copies the relevant chunks and sections in the appropriate files required for package development.
Implementations of the algorithms present article Generalized Spatial-Time Sequence Miner, original title (Castro, Antonio; Borges, Heraldo ; Pacitti, Esther ; Porto, Fabio ; Coutinho, Rafaelli ; Ogasawara, Eduardo . Generalização de Mineração de Sequências Restritas no Espaço e no Tempo. In: XXXVI SBBD - Simpósio Brasileiro de Banco de Dados, 2021 <doi:10.5753/sbbd.2021.17891>).
Functions, data sets, analyses and examples from the book A Handbook of Statistical Analyses Using R (Brian S. Everitt and Torsten Hothorn, Chapman & Hall/CRC, 2006). The first chapter of the book, which is entitled An Introduction to R'', is completely included in this package, for all other chapters, a vignette containing all data analyses is available.
Auxiliary package for better/faster analytics, visualization, data mining, and machine learning tasks. With a wide variety of family functions, like Machine Learning, Data Wrangling, Marketing Mix Modeling (Robyn), Exploratory, API, and Scrapper, it helps the analyst or data scientist to get quick and robust results, without the need of repetitive coding or advanced R programming skills.
Transforms, calculates, and presents results from the Mental Health Quality of Life Questionnaire (MHQoL
), a measure of health-related quality of life for individuals with mental health conditions. Provides scoring functions, summary statistics, and visualization tools to facilitate interpretation. For more details see van Krugten et al.(2022) <doi:10.1007/s11136-021-02935-w>.
Performing multiple-class cluster correspondence analysis(MCCCA). The main functions are create.MCCCAdata()
to create a list to be applied to MCCCA, MCCCA()
to apply MCCCA, and plot.mccca()
for visualizing MCCCA result. Methods used in the package refers to Mariko Takagishi and Michel van de Velden (2022)<doi:10.1080/10618600.2022.2035737>.
Posterior distribution of case-control fine-mapping. Specifically, Bayesian variable selection for single-nucleotide polymorphism (SNP) data using the normal-gamma prior. Alenazi A.A., Cox A., Juarez M,. Lin W-Y. and Walters, K. (2019) Bayesian variable selection using partially observed categorical prior information in fine-mapping association studies, Genetic Epidemiology. <doi:10.1002/gepi.22213>.
Algorithms for ordinal causal discovery. This package aims to enable users to discover causality for observational ordinal categorical data with greedy and exhaustive search. See Ni, Y., & Mallick, B. (2022) <https://proceedings.mlr.press/v180/ni22a/ni22a.pdf> "Ordinal Causal Discovery. Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, (UAI 2022), PMLR 180:1530â 1540".
This package implements the Panel Data Approach Method for program evaluation as developed in Hsiao, Ching and Ki Wan (2012). pampe estimates the effect of an intervention by comparing the evolution of the outcome for a unit affected by an intervention or treatment to the evolution of the unit had it not been affected by the intervention.
The modeling and prediction of graph-associated time series(GATS) based on continuous time quantum walk. This software is mainly used for feature extraction, modeling, prediction and result evaluation of GATS, including continuous time quantum walk simulation, feature selection, regression analysis, time series prediction, and series fit calculation. A paper is attached to the package for reference.
This statistical method uses the nearest neighbor algorithm to estimate absolute distances between single cells based on a chosen constellation of surface proteins, with these distances being a measure of the similarity between the two cells being compared. Based on Sen, N., Mukherjee, G., and Arvin, A.M. (2015) <DOI:10.1016/j.ymeth.2015.07.008>.
Simulates and plots quantities of interest (relative hazards, first differences, and hazard ratios) for linear coefficients, multiplicative interactions, polynomials, penalised splines, and non-proportional hazards, as well as stratified survival curves from Cox Proportional Hazard models. It also simulates and plots marginal effects for multiplicative interactions. Methods described in Gandrud (2015) <doi:10.18637/jss.v065.i03>.
This package provides functions to non-parametrically estimate the off-pulse interval of a source function originating from a pulsar. The technique is based on a sequential application of P-values obtained from goodness-of-fit tests for the uniform distribution, such as the Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling and Rayleigh goodness-of-fit tests.
Based on STATA xtsum command, it is used to compute summary statistics for a panel data set. It generates overall, between-group, and within-group statistics for specified variables in a panel data set, as presented in S. Porter (2023) <https://stephenporter.org/files/xtsum_handout.pdf>, StataCorp
(2023) <https://www.stata.com/manuals/xtxtsum.pdf>.
lpNet
aims at infering biological networks, in particular signaling and gene networks. For that it takes perturbation data, either steady-state or time-series, as input and generates an LP model which allows the inference of signaling networks. For parameter identification either leave-one-out cross-validation or stratified n-fold cross-validation can be used.
GNU Rot[t]log is a program for managing log files. It is used to automatically rotate out log files when they have reached a given size or according to a given schedule. It can also be used to automatically compress and archive such logs. Rot[t]log will mail reports of its activity to the system administrator.
Machine Learning models are widely used and have various applications in classification or regression. Models created with boosting, bagging, stacking or similar techniques are often used due to their high performance, but such black-box models usually lack interpretability. The DALEX package contains various explainers that help to understand the link between input variables and model output.
This package provides functions to perform reproducible parallel foreach
loops, using independent random streams as generated by L'Ecuyer's combined multiple-recursive generator. It enables to easily convert standard %dopar%
loops into fully reproducible loops, independently of the number of workers, the task scheduling strategy, or the chosen parallel environment and associated foreach backend.