You can use this function to easily draw a combined histogram and restricted cubic spline. The function draws the graph through ggplot2'. RCS fitting requires the use of the rcs() function of the rms package. Can fit cox regression, logistic regression. This method was described by Per Kragh (2003) <doi:10.1002/sim.1497>.
This package provides a visualization suite primarily designed for single-cell RNA-sequencing data analysis applications, but adaptable to other purposes as well. It introduces novel plots to represent two-variable and frequency data and optimizes some commonly used plotting options (e.g., correlation, network, density and alluvial plots) for ease of usage and flexibility.
Just analysis methods ('jam') base functions focused on bioinformatics. Version- and gene-centric alphanumeric sort, unique name and version assignment, colorized console and HTML output, color ramp and palette manipulation, Rmarkdown cache import, styled Excel worksheet import and export, interpolated raster output from smooth scatter and image plots, list to delimited vector, efficient list tools.
This package provides a shiny application for forensic kinship testing, based on the pedsuite R packages. KLINK is closely aligned with the (non-R) software Familias and FamLink', but offers several unique features, including visualisations and automated report generation. The calculation of likelihood ratios supports pairs of linked markers, and all common mutation models.
Efficient procedures for fitting the regularization path for linear, binomial, multinomial, Ising and Potts models with lasso, group lasso or column lasso(only for multinomial) penalty. The package uses Linearized Bregman Algorithm to solve the regularization path through iterations. Bregman Inverse Scale Space Differential Inclusion solver is also provided for linear model with lasso penalty.
The main functions perform mixed models analysis by least squares or REML by adding the function r() to formulas of lm() and glm(). A collection of text-book statistics for higher education is also included, e.g. modifications of the functions lm(), glm() and associated summaries from the package stats'.
This package provides tools to handle, manipulate and explore trajectory data, with an emphasis on data from tracked animals. The package is designed to support large studies with several million location records and keep track of units where possible. Data import directly from movebank <https://www.movebank.org/cms/movebank-main> and files is facilitated.
Create and integrate thematic maps in your workflow. This package helps to design various cartographic representations such as proportional symbols, choropleth or typology maps. It also offers several functions to display layout elements that improve the graphic presentation of maps (e.g. scale bar, north arrow, title, labels). mapsf maps sf objects on base graphics.
Generalized Egger tests for detecting publication bias in meta-analysis for diagnostic accuracy test (Noma (2020) <doi:10.1111/biom.13343>, Noma (2022) <doi:10.48550/arXiv.2209.07270>). These publication bias tests are generally more powerful compared with the conventional univariate publication bias tests and can incorporate correlation information between the outcome variables.
Analyzing regression data with many and/or highly collinear predictor variables, by simultaneously reducing the predictor variables to a limited number of components and regressing the criterion variables on these components (de Jong S. & Kiers H. A. L. (1992) <doi:10.1016/0169-7439(92)80100-I>). Several rotation and model selection options are provided.
It contains functions to estimate multivariate Student's t dynamic and static regression models for given degrees of freedom and lag length. Users can also specify the trends and dummies of any kind in matrix form. Poudyal, N., and Spanos, A. (2022) <doi:10.3390/econometrics10020017>. Spanos, A. (1994) <http://www.jstor.org/stable/3532870>.
This package provides a set of functions and datasets implementation of small area estimation when auxiliary variable is measured with error. These functions provide a empirical best linear unbiased prediction (EBLUP) estimator and mean squared error (MSE) estimator of the EBLUP. These models were developed by Ybarra and Lohr (2008) <doi:10.1093/biomet/asn048>.
This package provides a spectral framework to map quantitative trait loci (QTLs) affecting joint differential networks of gene co-Expression. Test the equivalence among multiple biological networks via spectral statistics. See reference Hu, J., Weber, J. N., Fuess, L. E., Steinel, N. C., Bolnick, D. I., & Wang, M. (2025) <doi:10.1371/journal.pcbi.1012953>.
This package provides an imputation pipeline for single-cell RNA sequencing data. The scISR method uses a hypothesis-testing technique to identify zero-valued entries that are most likely affected by dropout events and estimates the dropout values using a subspace regression model (Tran et.al. (2022) <DOI:10.1038/s41598-022-06500-4>).
Facilitates extraction of geospatial data from the Office for National Statistics Open Geography and nomis Application Programming Interfaces (APIs). Simplifies process of querying nomis datasets <https://www.nomisweb.co.uk/> and extracting desired datasets in dataframe format. Extracts area shapefiles at chosen resolution from Office for National Statistics Open Geography <https://geoportal.statistics.gov.uk/>.
Implementation of small area estimation (Fay-Herriot model) with EBLUP (Empirical Best Linear Unbiased Prediction) Approach for non-sampled area estimation by adding cluster information and assuming that there are similarities among particular areas. See also Rao & Molina (2015, ISBN:978-1-118-73578-7) and Anisa et al. (2013) <doi:10.9790/5728-10121519>.
Integrates several popular high-dimensional methods based on Linear Discriminant Analysis (LDA) and provides a comprehensive and user-friendly toolbox for linear, semi-parametric and tensor-variate classification as mentioned in Yuqing Pan, Qing Mai and Xin Zhang (2019) <arXiv:1904.03469>. Functions are included for covariate adjustment, model fitting, cross validation and prediction.
This contains functions that can be used to estimate the time-dependent precision-recall curve (PRC) and the corresponding area under the PRC for right-censored survival data. It also compute time-dependent ROC curve and its corresponding area under the ROC curve (AUC). See Beyene, Chen and Kifle (2024) <doi:10.1002/bimj.202300135>.
Fetch data from the <https://www.justice.gov/developer/api-documentation/api_v1> API such as press releases, blog entries, and speeches. Optional parameters allow users to specify the number of results starting from the earliest or latest entries, and whether these results contain keywords. Data is cleaned for analysis and returned in a dataframe.
If f <- function(x)x^2 and g <- function(x)x+1 it is a constant source of annoyance that "f+g" is not defined. Package vfunc allows you to do this, and we have (f+g)(2) returning 5. The other arithmetic operators are similarly implemented. A wide class of coding bugs is eliminated.
This package performs both classical and robust panel clustering by applying Principal Component Analysis (PCA) for dimensionality reduction and clustering via standard K-Means or Trimmed K-Means. The method is designed to ensure stable and reliable clustering, even in the presence of outliers. Suitable for analyzing panel data in domains such as economic research, financial time-series, healthcare analytics, and social sciences. The package allows users to choose between classical K-Means for standard clustering and Trimmed K-Means for robust clustering, making it a flexible tool for various applications. For this package, we have benefited from the studies Rencher (2003), Wang and Lu (2021) <DOI:10.25236/AJBM.2021.031018>, Cuesta-Albertos et al. (1997) <https://www.jstor.org/stable/2242558?seq=1>.
Response surface designs with neighbour effects are suitable for experimental situations where it is expected that the treatment combination administered to one experimental unit may affect the response on neighboring units as well as the response on the unit to which it is applied (Dalal et al.,2025 <doi: 10.57805/revstat.v23i2.513>). Integrating these effects in the response surface model improves the experiment's precision Verma A., Jaggi S., Varghese, E.,Varghese, C.,Bhowmik, A., Datta, A. and Hemavathi M. (2021)<doi: 10.1080/03610918.2021.1890123>). This package includes sym(), asym1(), asym2(), asym3() and asym4() functions that generates response surface designs which are rotatable under a polynomial model of a given order without interaction term incorporating neighbour effects.
GNU Rot[t]log is a program for managing log files. It is used to automatically rotate out log files when they have reached a given size or according to a given schedule. It can also be used to automatically compress and archive such logs. Rot[t]log will mail reports of its activity to the system administrator.
This package provides tools for making the descriptive "Table 1" used in medical articles, a transition plot for showing changes between categories (also known as a Sankey diagram), flow charts by extending the grid package, a method for variable selection based on the SVD, Bezier lines with arrows complementing the ones in the grid package, and more.