Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides customized forest plots for network meta-analysis incorporating direct, indirect, and NMA effects. Includes visualizations of evidence contributions through proportion bars based on the hat matrix and evidence flow decomposition.
This package provides functions to access NASA's Earth Imagery and Assets API and the Earth Observatory Natural Event Tracker (EONET) webservice.
Color palettes for data visualization inspired by National Parks. Currently contains 15 color schemes and checks for colorblind-friendliness of palettes.
This package contains methods described by Dennis Helsel in his book "Statistics for Censored Environmental Data using Minitab and R" (2011) and courses and videos at <https://practicalstats.com>. This package incorporates functions of NADA and adds new functionality.
This package contains the following 5 nonparametric hypothesis tests: The Sign Test, The 2 Sample Median Test, Miller's Jackknife Procedure, Cochran's Q Test, & The Stuart-Maxwell Test.
Multidimensional nonparametric spatial (spatio-temporal) geostatistics. S3 classes and methods for multidimensional: linear binning, local polynomial kernel regression (spatial trend estimation), density and variogram estimation. Nonparametric methods for simultaneous inference on both spatial trend and variogram functions (for spatial processes). Nonparametric residual kriging (spatial prediction). For details on these methods see, for example, Fernandez-Casal and Francisco-Fernandez (2014) <doi:10.1007/s00477-013-0817-8> or Castillo-Paez et al. (2019) <doi:10.1016/j.csda.2019.01.017>.
Computes interdaily stability (IS), intradaily variability (IV) & the relative amplitude (RA) from actigraphy data as described in Blume et al. (2016) <doi: 10.1016/j.mex.2016.05.006> and van Someren et al. (1999) <doi: 10.3109/07420529908998724>. Additionally, it also computes L5 (i.e. the 5 hours with lowest average actigraphy amplitude) and M10 (the 10 hours with highest average amplitude) as well as the respective start times. The flex versions will also compute the L-value for a user-defined number of minutes. IS describes the strength of coupling of a rhythm to supposedly stable zeitgebers. It varies between 0 (Gaussian Noise) and 1 for perfect IS. IV describes the fragmentation of a rhythm, i.e. the frequency and extent of transitions between rest and activity. It is near 0 for a perfect sine wave, about 2 for Gaussian noise and may be even higher when a definite ultradian period of about 2 hrs is present. RA is the relative amplitude of a rhythm. Note that to obtain reliable results, actigraphy data should cover a reasonable number of days.
This package contains a module to define neural networks from custom components and versions of Autoencoder, BP, LVQ, MAM NN.
Density, distribution function, quantile function and random generation for the 3D Navarro, Frenk & White (NFW) profile. For details see Robotham & Howlett (2018) <arXiv:1805.09550>.
Derives the most frequent hierarchies along with their probability of occurrence. One can also define complex hierarchy criteria and calculate their probability. Methodology based on Papakonstantinou et al. (2021) <DOI:10.21203/rs.3.rs-858140/v1>.
Conduct inference on the sample average treatment effect for a matched (observational) dataset with a continuous treatment. Equipped with calipered non-bipartite matching, bias-corrected sample average treatment effect estimation, and covariate-adjusted variance estimation. Matching, estimation, and inference methods are described in Frazier, Heng and Zhou (2024) <doi:10.48550/arXiv.2409.11701>.
Plot, process, and analyze NPO files produced by Nonpareil <http://enve-omics.ce.gatech.edu/nonpareil/>.
It names the R Markdown chunks of files based on the filename.
Computes and plots the boundary between night and day.
The implementation of Markov Model Multiple Imputation with the application to COVID-19 scale, NIAID OS.
This package provides a graphical display of results from network meta-analysis (NMA). It is suitable for outcomes like odds ratio (OR), risk ratio (RR), risk difference (RD) and standardized mean difference (SMD). It also has an option to visually display and compare the surface under the cumulative ranking (SUCRA) of different treatments.
Facilitates building a nesting or hierarchical structure as a list or data frame by using a human friendly syntax.
Catalogue of NBER working papers published between June 1973 and December 2021.
Simulation and estimation for Neyman-Scott spatial cluster point process models and their extensions, based on the methodology in Tanaka, Ogata, and Stoyan (2008) <doi:10.1002/bimj.200610339>. To estimate parameters by the simplex method, parallel computation using OpenMP application programming interface is available. For more details see Tanaka, Saga and Nakano <doi:10.18637/jss.v098.i06>.
This package provides a nonvisual procedure for screening time series for nonstationarity in the context of intensive longitudinal designs, such as ecological momentary assessments. The method combines two diagnostics: one for detecting trends (based on the split R-hat statistic from Bayesian convergence diagnostics) and one for detecting changes in variance (a novel extension inspired by Levene's test). This approach allows researchers to efficiently and reproducibly detect violations of the stationarity assumption, especially when visual inspection of many individual time series is impractical. The procedure is suitable for use in all areas of research where time series analysis is central. For a detailed description of the method and its validation through simulations and empirical application, see Zitzmann, S., Lindner, C., Lohmann, J. F., & Hecht, M. (2024) "A Novel Nonvisual Procedure for Screening for Nonstationarity in Time Series as Obtained from Intensive Longitudinal Designs" <https://www.researchgate.net/publication/384354932_A_Novel_Nonvisual_Procedure_for_Screening_for_Nonstationarity_in_Time_Series_as_Obtained_from_Intensive_Longitudinal_Designs>.
This package provides a small package designed for interpreting continuous and categorical latent variables. You provide a data set with a latent variable you want to understand and some other explanatory variables. It provides a description of the latent variable based on the explanatory variables. It also provides a name to the latent variable.
Addressing crucial research questions often necessitates a small sample size due to factors such as distinctive target populations, rarity of the event under study, time and cost constraints, ethical concerns, or group-level unit of analysis. Many readily available analytic methods, however, do not accommodate small sample sizes, and the choice of the best method can be unclear. The npboottprm package enables the execution of nonparametric bootstrap tests with pooled resampling to help fill this gap. Grounded in the statistical methods for small sample size studies detailed in Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, the package facilitates a range of statistical tests, encompassing independent t-tests, paired t-tests, and one-way Analysis of Variance (ANOVA) F-tests. The nonparboot() function undertakes essential computations, yielding detailed outputs which include test statistics, effect sizes, confidence intervals, and bootstrap distributions. Further, npboottprm incorporates an interactive shiny web application, nonparboot_app(), offering intuitive, user-friendly data exploration.
Calculation and presentation of decision-invariant bias adjustment thresholds and intervals for Network Meta-Analysis, as described by Phillippo et al. (2018) <doi:10.1111/rssa.12341>. These describe the smallest changes to the data that would result in a change of decision.
This package provides a number of statistical tests have been proposed to compare two survival curves, including the difference in (or ratio of) t-year survival, difference in (or ratio of) p-th percentile survival, difference in (or ratio of) restricted mean survival time, and the weighted log-rank test. Despite the multitude of options, the convention in survival studies is to assume proportional hazards and to use the unweighted log-rank test for design and analysis. This package provides sample size and power calculation for all of the above statistical tests with allowance for flexible accrual, censoring, and survival (eg. Weibull, piecewise-exponential, mixture cure). It is the companion R package to the paper by Yung and Liu (2020) <doi:10.1111/biom.13196>. Specific to the weighted log-rank test, users may specify which approximations they wish to use to estimate the large-sample mean and variance. The default option has been shown to provide substantial improvement over the conventional sample size and power equations based on Schoenfeld (1981) <doi:10.1093/biomet/68.1.316>.