Estimation and inference using the Fractionally Cointegrated Vector Autoregressive (VAR) model. It includes functions for model specification, including lag selection and cointegration rank selection, as well as a comprehensive set of options for hypothesis testing, including tests of hypotheses on the cointegrating relations, the adjustment coefficients and the fractional differencing parameters. An article describing the FCVAR model with examples is available on the Webpage <https://sites.google.com/view/mortennielsen/software>.
Make 2D and 3D plots of linear programming (LP), integer linear programming (ILP), or mixed integer linear programming (MILP) models with up to three objectives. Plots of both the solution and criterion space are possible. For instance the non-dominated (Pareto) set for bi-objective LP/ILP/MILP programming models (see vignettes for an overview). The package also contains an function for checking if a point is inside the convex hull.
Write statistical models in R and fit them by MCMC and optimisation on CPUs and GPUs, using Google TensorFlow
'. greta lets you write your own model like in BUGS, JAGS and Stan, except that you write models right in R, it scales well to massive datasets, and itâ s easy to extend and build on. See the website for more information, including tutorials, examples, package documentation, and the greta forum.
Generates valid HTML tag strings for HTML5 elements documented by Mozilla. Attributes are passed as named lists, with names being the attribute name and values being the attribute value. Attribute values are automatically double-quoted. To declare a DOCTYPE, wrap html()
with function doctype()
. Mozilla's documentation for HTML5 is available here: <https://developer.mozilla.org/en-US/docs/Web/HTML/Element>. Elements marked as obsolete are not included.
This package provides functions for processing, analysis and visualization of Hydrogen Deuterium eXchange
monitored by Mass Spectrometry experiments (HDX-MS) (<doi:10.1093/bioinformatics/btaa587>). HaDeX
introduces a new standardized and reproducible workflow for the analysis of the HDX-MS data, including novel uncertainty intervals. Additionally, it covers data exploration, quality control and generation of publication-quality figures. All functionalities are also available in the in-built Shiny app.
This package contains the MultiFractal
Detrended Fluctuation Analysis (MFDFA), MultiFractal
Detrended Cross-Correlation Analysis (MFXDFA), and the Multiscale Multifractal Analysis (MMA). The MFDFA()
function proposed in this package was used in Laib et al. (<doi:10.1016/j.chaos.2018.02.024> and <doi:10.1063/1.5022737>). See references for more information. Interested users can find a parallel version of the MFDFA()
function on GitHub
.
Detection of multivariate outliers using robust estimates of location and scale. The Minimum Covariance Determinant (MCD) estimator is used to calculate robust estimates of the mean vector and covariance matrix. Outliers are determined based on robust Mahalanobis distances using either an unstructured covariance matrix, a principal components structured covariance matrix, or a factor analysis structured covariance matrix. Includes options for specifying the direction of interest for outlier detection for each variable.
This package provides a reproducible workflow for binning and visualizing NMR (nuclear magnetic resonance) spectra from environmental samples. The nmrrr package is intended for post-processing of NMR data, including importing, merging and, cleaning data from multiple files, visualizing NMR spectra, performing binning/integrations for compound classes, and relative abundance calculations. This package can be easily inserted into existing analysis workflows by users to help with analyzing and interpreting NMR data.
Constructs (non)additive genetic relationship matrices, and their inverses, from a pedigree to be used in linear mixed effect models (A.K.A. the animal model'). Also includes other functions to facilitate the use of animal models. Some functions have been created to be used in conjunction with the R package asreml for the ASReml software, which can be obtained upon purchase from VSN international (<https://vsni.co.uk/software/asreml>).
This package provides functions to implement and simulate the partial order continual reassessment method (PO-CRM) of Wages, Conaway and O'Quigley (2011) <doi:10.1177/1740774511408748> for use in Phase I trials of combinations of agents. Provides a function for generating a set of initial guesses (skeleton) for the toxicity probabilities at each combination that correspond to the set of possible orderings of the toxicity probabilities specified by the user.
Power analysis for AB testing. The calculations are based on the Welch's unequal variances t-test, which is generally preferred over the Student's t-test when sample sizes and variances of the two groups are unequal, which is frequently the case in AB testing. In such situations, the Student's t-test will give biased results due to using the pooled standard deviation, unlike the Welch's t-test.
The straightforward filtering index (SFINX) identifies true positive protein interactions in a fast, user-friendly, and highly accurate way. It is not only useful for the filtering of affinity purification - mass spectrometry (AP-MS) data, but also for similar types of data resulting from other co-complex interactomics technologies, such as TAP-MS, Virotrap and BioID
. SFINX can also be used via the website interface at <http://sfinx.ugent.be>.
Utilities for rapidly loading specified rows and/or columns of data from large tab-separated value (tsv) files (large: e.g. 1 GB file of 10000 x 10000 matrix). tsvio is an R wrapper to C code that creates an index file for the rows of the tsv file, and uses that index file to collect rows and/or columns from the tsv file without reading the whole file into memory.
Extends standard penalized regression (Lasso, Ridge, and Elastic-net) to allow feature-specific shrinkage based on external information with the goal of achieving a better prediction accuracy and variable selection. Examples of external information include the grouping of predictors, prior knowledge of biological importance, external p-values, function annotations, etc. The choice of multiple tuning parameters is done using an Empirical Bayes approach. A majorization-minimization algorithm is employed for implementation.
The biodb package provides access to standard remote chemical and biological databases (ChEBI, KEGG, HMDB, ...), as well as to in-house local database files (CSV, SQLite), with easy retrieval of entries, access to web services, search of compounds by mass and/or name, and mass spectra matching for LCMS and MSMS. Its architecture as a development framework facilitates the development of new database connectors for local projects or inside separate published packages.
This package provides a collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <doi:10.48550/arXiv.2201.12003>
.
Supplies higher-order coordinatized data specification and fluid transform operators that include pivot and anti-pivot as special cases. The methodology is describe in Zumel', 2018, "Fluid data reshaping with cdata'", <https://winvector.github.io/FluidData/FluidDataReshapingWithCdata.html>
, <DOI:10.5281/zenodo.1173299> . This package introduces the idea of explicit control table specification of data transforms. Works on in-memory data or on remote data using rquery and SQL database interfaces.
Stan based functions to estimate CAR-MM models. These models allow to estimate Generalised Linear Models with CAR (conditional autoregressive) spatial random effects for spatially and temporally misaligned data, provided a suitable Multiple Membership matrix. The main references are Gramatica, Liverani and Congdon (2023) <doi:10.1214/23-BA1370>, Petrof, Neyens, Nuyts, Nackaerts, Nemery and Faes (2020) <doi:10.1002/sim.8697> and Gramatica, Congdon and Liverani <doi:10.1111/rssc.12480>.
We offer an implementation of the series representation put forth in "A series representation for multidimensional Rayleigh distributions" by Wiegand and Nadarajah <DOI: 10.1002/dac.3510>. Furthermore we have implemented an integration approach proposed by Beaulieu et al. for 3 and 4-dimensional Rayleigh densities (Beaulieu, Zhang, "New simplest exact forms for the 3D and 4D multivariate Rayleigh PDFs with applications to antenna array geometrics", <DOI: 10.1109/TCOMM.2017.2709307>).
Interface to the python package dgpsi for Gaussian process, deep Gaussian process, and linked deep Gaussian process emulations of computer models and networks using stochastic imputation (SI). The implementations follow Ming & Guillas (2021) <doi:10.1137/20M1323771> and Ming, Williamson, & Guillas (2023) <doi:10.1080/00401706.2022.2124311> and Ming & Williamson (2023) <doi:10.48550/arXiv.2306.01212>
. To get started with the package, see <https://mingdeyu.github.io/dgpsi-R/>.
R package to build and simulate deterministic discrete-time compartmental models that can be non-Markov. Length of stay in each compartment can be defined to follow a parametric distribution (d_exponential()
, d_gamma()
, d_weibull()
, d_lognormal()
) or a non-parametric distribution (nonparametric()
). Other supported types of transition from one compartment to another includes fixed transition (constant()
), multinomial (multinomial()
), fixed transition probability (transprob()
).
Generally, most of the packages specify the probability density function, cumulative distribution function, quantile function, and random numbers generation of the probability distributions. The present package allows to compute some important distributional properties, including the first four ordinary and central moments, Pearson's coefficient of skewness and kurtosis, the mean and variance, coefficient of variation, median, and quartile deviation at some parametric values of several well-known and extensively used probability distributions.
Statistical testing procedures for detecting GxE
(gene-environment) interactions. The main focus lies on GRSxE
interaction tests that aim at detecting GxE
interactions through GRS (genetic risk scores). Moreover, a novel testing procedure based on bagging and OOB (out-of-bag) predictions is implemented for incorporating all available observations at both GRS construction and GxE
testing (Lau et al., 2023, <doi:10.1038/s41598-023-28172-4>).
This package provides functions and methods for: splitting large raster objects into smaller chunks, transferring images from a binary format into raster layers, transferring raster layers into an RData file, calculating the maximum gap (amount of consecutive missing values) of a numeric vector, and fitting harmonic regression models to periodic time series. The homoscedastic harmonic regression model is based on G. Roerink, M. Menenti and W. Verhoef (2000) <doi:10.1080/014311600209814>.