This package provides functions and methods for: splitting large raster objects into smaller chunks, transferring images from a binary format into raster layers, transferring raster layers into an RData file, calculating the maximum gap (amount of consecutive missing values) of a numeric vector, and fitting harmonic regression models to periodic time series. The homoscedastic harmonic regression model is based on G. Roerink, M. Menenti and W. Verhoef (2000) <doi:10.1080/014311600209814>.
Generation of synthetic data from a real dataset using the combination of rank normal inverse transformation with the calculation of correlation matrix <doi:10.1055/a-2048-7692>. Completely artificial data may be generated through the use of Generalized Lambda Distribution and Generalized Poisson Distribution <doi:10.1201/9781420038040>. Quantitative, binary, ordinal categorical, and survival data may be simulated. Functionalities are offered to generate synthetic data sets according to user's needs.
Partial informational correlation (PIC) is used to identify the meaningful predictors to the response from a large set of potential predictors. Details of methodologies used in the package can be found in Sharma, A., Mehrotra, R. (2014). <doi:10.1002/2013WR013845>, Sharma, A., Mehrotra, R., Li, J., & Jha, S. (2016). <doi:10.1016/j.envsoft.2016.05.021>, and Mehrotra, R., & Sharma, A. (2006). <doi:10.1016/j.advwatres.2005.08.007>.
Calculates, via simulation, power and appropriate stopping alpha boundaries (and/or futility bounds) for sequential analyses (i.e., group sequential design) as well as for multiple hypotheses (multiple tests included in an analysis), given any specified global error rate. This enables the sequential use of practically any significance test, as long as the underlying data can be simulated in advance to a reasonable approximation. Lukács (2022) <doi:10.21105/joss.04643>.
This package provides a comprehensive suite of tools for analyzing omics data. It includes functionalities for alpha diversity analysis, beta diversity analysis, differential abundance analysis, community assembly analysis, visualization of phylogenetic tree, and functional enrichment analysis. With a progressive approach, the package offers a range of analysis methods to explore and understand the complex communities. It is designed to support researchers and practitioners in conducting in-depth and professional omics data analysis.
An automatic cell type detection and assignment algorithm for single cell RNA-Seq and Cytof/FACS data. SCINA is capable of assigning cell type identities to a pool of cells profiled by scRNA-Seq
or Cytof/FACS data with prior knowledge of markers, such as genes and protein symbols that are highly or lowly expressed in each category. See Zhang Z, et al (2019) <doi:10.3390/genes10070531> for more details.
Implementation of SING algorithm to extract joint and individual non-Gaussian components from two datasets. SING uses an objective function that maximizes the skewness and kurtosis of latent components with a penalty to enhance the similarity between subject scores. Unlike other existing methods, SING does not use PCA for dimension reduction, but rather uses non-Gaussianity, which can improve feature extraction. Benjamin B.Risk, Irina Gaynanova (2021) <doi:10.1214/21-AOAS1466>.
Email Finder R Client Library. Search emails are based on the website You give one domain name and it returns all the email addresses found on the internet. Email Finder generates or retrieves the most likely email address from a domain name, a first name and a last name. Email verify checks the deliverability of a given email address, verifies if it has been found in our database, and returns their sources.
This package provides an implementation of the ACME estimator, described in Wolpert (2015), ACME: A Partially Periodic Estimator of Avian & Chiropteran Mortality at Wind Turbines. Unlike most other models, this estimator supports decreasing-hazard Weibull model for persistence; decreasing search proficiency as carcasses age; variable bleed-through at successive searches; and interval mortality estimates. The package provides, based on search data, functions for estimating the mortality inflation factor in Frequentist and Bayesian settings.
This package provides an R wrapper for libnabo, an exact or approximate k nearest neighbour library which is optimised for low dimensional spaces (e.g. 3D). nabor
includes a knn
function that is designed as a drop-in replacement for the RANN function nn2
. In addition, objects which include the k-d tree search structure can be returned to speed up repeated queries of the same set of target points.
R comes with a suite of utilities for linear algebra with "numeric" (double precision) vectors/matrices. However, sometimes single precision (or less!) is more than enough for a particular task. This package extends R's linear algebra facilities to include 32-bit float (single precision) data. Float vectors/matrices have half the precision of their "numeric"-type counterparts but are generally faster to numerically operate on, for a performance vs accuracy trade-off.
This package provides a unified and straightforward interface for performing a variety of meta-analysis methods directly from user data. Users can input a data frame, specify key parameters, and effortlessly execute and compare multiple common meta-analytic models. Designed for immediate usability, the package facilitates transparent, reproducible research without manual implementation of each analytical method. Ideal for researchers aiming for efficiency and reproducibility, it streamlines workflows from data preparation to results interpretation.
The Global Biodiversity Information Facility ('GBIF', <https://www.gbif.org>) sources data from an international network of data providers, known as nodes'. Several of these nodes - the "living atlases" (<https://living-atlases.gbif.org>) - maintain their own web services using software originally developed by the Atlas of Living Australia ('ALA', <https://www.ala.org.au>). galah enables the R community to directly access data and resources hosted by GBIF and its partner nodes.
This package provides a set of functions to estimate haziness of an image based on RGB bands. It returns a haze factor, varying from 0 to 1, a metric for fogginess and cloudiness. The package also presents additional functions to estimate brightness, darkness and contrast rasters of the RGB image. This package can be used for several applications such as inference of weather quality data and performing environmental studies from interpreting digital images.
This is an EM algorithm based method for imputation of missing values in multivariate normal time series. The imputation algorithm accounts for both spatial and temporal correlation structures. Temporal patterns can be modeled using an ARIMA(p,d,q), optionally with seasonal components, a non-parametric cubic spline or generalized additive models with exogenous covariates. This algorithm is specially tailored for climate data with missing measurements from several monitors along a given region.
Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of survival and reproduction Data. Among others, it facilitates Bayesian inference of the general unified threshold model of survival (GUTS). See our companion paper Baudrot and Charles (2021) <doi:10.21105/joss.03200>, as well as complementary details in Baudrot et al. (2018) <doi:10.1021/acs.est.7b05464> and Delignette-Muller et al. (2017) <doi:10.1021/acs.est.6b05326>.
An estimation procedure for the analysis of nonparametric proportional hazards model (e.g. h(t) = h0(t)exp(b(t)'Z)), providing estimation of b(t) and its pointwise standard errors, and semiparametric proportional hazards model (e.g. h(t) = h0(t)exp(b(t)'Z1 + c*Z2)), providing estimation of b(t), c and their standard errors. More details can be found in Lu Tian et al. (2005) <doi:10.1198/016214504000000845>.
This package implements the procedure from G. J. Ross (2021) - "Nonparametric Detection of Multiple Location-Scale Change Points via Wild Binary Segmentation" <arxiv:2107.01742>. This uses a version of Wild Binary Segmentation to detect multiple location-scale (i.e. mean and/or variance) change points in a sequence of univariate observations, with a strict control on the probability of incorrectly detecting a change point in a sequence which does not contain any.
Implementation of a likelihood ratio test of differential onset of senescence between two groups. Given two groups with measures of age and of an individual trait likely to be subjected to senescence (e.g. body mass), OnAge
provides an asymptotic p-value for the null hypothesis that senescence starts at the same age in both groups. The package implements the procedure used in Douhard et al. (2017) <doi:10.1111/oik.04421>.
Offers a streamlined programmatic interface to Ordnance Survey's British National Grid (BNG) index system, enabling efficient spatial indexing and analysis based on grid references. It supports a range of geospatial applications, including statistical aggregation, data visualisation, and interoperability across datasets. Designed for developers and analysts working with geospatial data in Great Britain, osbng simplifies integration with geospatial workflows and provides intuitive tools for exploring the structure and logic of the BNG system.
Estimate the size of a networked population based on respondent-driven sampling data. The package is part of the "RDS Analyst" suite of packages for the analysis of respondent-driven sampling data. See Handcock, Gile and Mar (2014) <doi:10.1214/14-EJS923>, Handcock, Gile and Mar (2015) <doi:10.1111/biom.12255>, Kim and Handcock (2021) <doi:10.1093/jssam/smz055>, and McLaughlin
, et. al. (2023) <doi:10.1214/23-AOAS1807>.
This package provides functions to combine data.frames in ways that require additional effort in base R, and to add metadata (id, title, ...) that can be used for printing and xlsx export. The Tatoo_report class is provided as a convenient helper to write several such tables to a workbook, one table per worksheet. Tatoo is built on top of openxlsx', but intimate knowledge of that package is not required to use tatoo.
The Time-Delay Correlation algorithm (TDCor) reconstructs the topology of a gene regulatory network (GRN) from time-series transcriptomic data. The algorithm is described in details in Lavenus et al., Plant Cell, 2015. It was initially developed to infer the topology of the GRN controlling lateral root formation in Arabidopsis thaliana. The time-series transcriptomic dataset which was used in this study is included in the package to illustrate how to use it.
ripgrep is a line-oriented search tool that recursively searches the current directory for a regex pattern. By default, ripgrep will respect gitignore rules and automatically skip hidden files/directories and binary files. (To disable all automatic filtering by default, use rg -uuu.) ripgrep has first class support on Windows, macOS and Linux, with binary downloads available for every release. ripgrep is similar to other popular search tools like The Silver Searcher, ack and grep.