This package provides a comprehensive library for date-time manipulations using a new family of orthogonal date-time classes (durations, time points, zoned-times, and calendars) that partition responsibilities so that the complexities of time zones are only considered when they are really needed. Capabilities include: date-time parsing, formatting, arithmetic, extraction and updating of components, and rounding.
Relative, generalized, and Erreygers corrected concentration index; plot Lorenz curves; and decompose health inequalities into contributing factors. The package currently works with (generalized) linear models, survival models, complex survey models, and marginal effects probit models. originally forked by Brecht Devleesschauwer from the decomp package (no longer on CRAN), rineq is now maintained by Kaspar Walter Meili. Compared to the earlier rineq version on github by Brecht Devleesschauwer (<https://github.com/brechtdv/rineq>), the regression tree functionality has been removed. Improvements compared to earlier versions include improved plotting of decomposition and concentration, added functionality to calculate the concentration index with different methods, calculation of robust standard errors, and support for the decomposition analysis using marginal effects probit regression models. The development version is available at <https://github.com/kdevkdev/rineq>.
This package provides an R interface for the Bureau of Economic Analysis (BEA) API (see <http://www.bea.gov/API/bea_web_service_api_user_guide.htm> for more information) that serves two core purposes - 1. To Extract/Transform/Load data [beaGet()
] from the BEA API as R-friendly formats in the user's work space [transformation done by default in beaGet()
can be modified using optional parameters; see, too, bea2List()
, bea2Tab()
]. 2. To enable the search of descriptive meta data [beaSearch()
]. Other features of the library exist mainly as intermediate methods or are in early stages of development. Important Note - You must have an API key to use this library. Register for a key at <http://www.bea.gov/API/signup/index.cfm> .
Numerous functions for cohort-based analyses, either for prediction or causal inference. For causal inference, it includes Inverse Probability Weighting and G-computation for marginal estimation of an exposure effect when confounders are expected. We deal with binary outcomes, times-to-events, competing events, and multi-state data. For multistate data, semi-Markov model with interval censoring may be considered, and we propose the possibility to consider the excess of mortality related to the disease compared to reference lifetime tables. For predictive studies, we propose a set of functions to estimate time-dependent receiver operating characteristic (ROC) curves with the possible consideration of right-censoring times-to-events or the presence of confounders. Finally, several functions are available to assess time-dependent ROC curves or survival curves from aggregated data.
This package provides functions to convert origin-destination data, represented as straight desire lines in the sf Simple Features class system, into JSON files that can be directly imported into A/B Street <https://www.abstreet.org>, a free and open source tool for simulating urban transport systems and scenarios of change <doi:10.1007/s10109-020-00342-2>.
Finds the k nearest neighbours in a dataset of specified points, adding the option to wrap certain variables on a torus. The user chooses the algorithm to use to find the nearest neighbours. Two such algorithms, provided by the packages RANN <https://cran.r-project.org/package=RANN>, and nabor <https://cran.r-project.org/package=nabor>, are suggested.
Upload, download, and edit internet maps with the Felt API (<https://feltmaps.notion.site/Felt-Public-API-reference-c01e0e6b0d954a678c608131b894e8e1>). Allows users to create new maps, edit existing maps, and extract data. Provides tools for working with layers, which represent geographic data, and elements, which are interactive annotations. Spatial data accessed from the API is transformed to work with sf'.
Generate commonly used plots in the field of design of experiments using ggplot2'. ggDoE
currently supports the following plots: alias matrix, box cox transformation, boxplots, lambda plot, regression diagnostic plots, half normal plots, main and interaction effect plots for factorial designs, contour plots for response surface methodology, Pareto plot, and two dimensional projections of a latin hypercube design.
An EM algorithm, Karl et al. (2013) <doi:10.1016/j.csda.2012.10.004>, is used to estimate the generalized, variable, and complete persistence models, Mariano et al. (2010) <doi:10.3102/1076998609346967>. These are multiple-membership linear mixed models with teachers modeled as "G-side" effects and students modeled with either "G-side" or "R-side" effects.
This package implements a nonparametric maximum likelihood method for assessing potentially time-varying vaccine efficacy (VE) against SARS-CoV-2
infection under staggered enrollment and time-varying community transmission, allowing crossover of placebo volunteers to the vaccine arm. Lin, D. Y., Gu, Y., Zeng, D., Janes, H. E., and Gilbert, P. B. (2021) <doi:10.1093/cid/ciab630>.
Simulate an inhomogeneous self-exciting process (IHSEP), or Hawkes process, with a given (possibly time-varying) baseline intensity and an excitation function. Calculate the likelihood of an IHSEP with given baseline intensity and excitation functions for an (increasing) sequence of event times. Calculate the point process residuals (integral transforms of the original event times). Calculate the mean intensity process.
This package provides an efficient implementation of univariate local polynomial kernel density estimators that can handle bounded and discrete data. See Geenens (2014) <doi:10.48550/arXiv.1303.4121>
, Geenens and Wang (2018) <doi:10.48550/arXiv.1602.04862>
, Nagler (2018a) <doi:10.48550/arXiv.1704.07457>
, Nagler (2018b) <doi:10.48550/arXiv.1705.05431>
.
To decompose symmetric matrices such as brain connectivity matrices so that one can extract sparse latent component matrices and also estimate mixing coefficients, a blind source separation (BSS) method named LOCUS was proposed in Wang and Guo (2023) <arXiv:2008.08915>
. For brain connectivity matrices, the outputs correspond to sparse latent connectivity traits and individual-level trait loadings.
Fit Bayesian Dynamic Generalized Additive Models to multivariate observations. Users can build nonlinear State-Space models that can incorporate semiparametric effects in observation and process components, using a wide range of observation families. Estimation is performed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the software Stan'. References: Clark & Wells (2023) <doi:10.1111/2041-210X.13974>.
Identifies the optimal number of clusters by calculating the similarity between two clustering methods at the same number of clusters using the corrected indices of Rand and Jaccard as described in Albatineh and Niewiadomska-Bugaj (2011). The number of clusters at which the index attain its maximum more frequently is a candidate for being the optimal number of clusters.
The maybe type represents the possibility of some value or nothing. It is often used instead of throwing an error or returning `NULL`. The advantage of using a maybe type over `NULL` is that it is both composable and requires the developer to explicitly acknowledge the potential absence of a value, helping to avoid the existence of unexpected behaviour.
This package provides utility functions and objects for Extreme Value Analysis. These include probability functions with their exact derivatives w.r.t. the parameters that can be used for estimation and inference, even with censored observations. The transformations exchanging the two parameterizations of Peaks Over Threshold (POT) models: Poisson-GP and Point-Process are also provided with their derivatives.
The purpose of this library is to to call different optimization solvers (such as Gonzalez Rodriguez et al. (2022) <doi:10.1007/s10898-022-01229-w>, Tawarmalani and Sahinidis (2005) <doi:10.1007/s10107-005-0581-8>, and Byrd et al. (2006) <doi:10.1007/0-387-30065-1_4>) to solve problems given by a standard nl file.
Imputation for both missing covariates and censored observations (optional) for survival data with missing covariates by the nearest neighbor based multiple imputation algorithm as described in Hsu et al. (2006) <doi:10.1002/sim.2452>, and Hsu and Yu (2018) <doi: 10.1177/0962280218772592>. Note that the current version can only impute for a situation with one missing covariate.
Optimal group-sequential designs minimise some function of the expected and maximum sample size whilst controlling the type I error rate and power at a specified level. OptGS
provides functions to quickly search for near-optimal group-sequential designs for normally distributed outcomes. The methods used are described in Wason, JMS (2015) <doi:10.18637/jss.v066.i02>.
Implementation of the modified skew discrete Laplace (SDL) regression model. The package provides a set of functions for a complete analysis of integer-valued data, where the dependent variable is assumed to follow a modified SDL distribution. This regression model is useful for the analysis of integer-valued data and experimental studies in which paired discrete observations are collected.
An integrated set of extensions to the ergm package to analyze and simulate network evolution based on exponential-family random graph models (ERGM). tergm is a part of the statnet suite of packages for network analysis. See Krivitsky and Handcock (2014) <doi:10.1111/rssb.12014> and Carnegie, Krivitsky, Hunter, and Goodreau (2015) <doi:10.1080/10618600.2014.903087>.
This package provides a toolbox to assist with statistical analysis of animal trajectories. It provides simple access to algorithms for calculating and assessing a variety of characteristics such as speed and acceleration, as well as multiple measures of straightness or tortuosity. Some support is provided for 3-dimensional trajectories. McLean
& Skowron Volponi (2018) <doi:10.1111/eth.12739>.
Bayesian variable selection using shrinkage priors to identify significant variables in high-dimensional datasets. The package includes methods for determining the number of significant variables through innovative clustering techniques of posterior distributions, specifically utilizing the 2-Means and Sequential 2-Means (S2M) approaches. The package aims to simplify the variable selection process with minimal tuning required in statistical analysis.