Weighted-L2 FPOP Maidstone et al. (2017) <doi:10.1007/s11222-016-9636-3> and pDPA/FPSN Rigaill (2010) <arXiv:1004.0887> algorithm for detecting multiple changepoints in the mean of a vector. Also includes a few model selection functions using Lebarbier (2005) <doi:10.1016/j.sigpro.2004.11.012> and the capsushe package.
Implementations of the algorithms present article Generalized Spatial-Time Sequence Miner, original title (Castro, Antonio; Borges, Heraldo ; Pacitti, Esther ; Porto, Fabio ; Coutinho, Rafaelli ; Ogasawara, Eduardo . Generalização de Mineração de Sequências Restritas no Espaço e no Tempo. In: XXXVI SBBD - Simpósio Brasileiro de Banco de Dados, 2021 <doi:10.5753/sbbd.2021.17891>).
Functions, data sets, analyses and examples from the book A Handbook of Statistical Analyses Using R (Brian S. Everitt and Torsten Hothorn, Chapman & Hall/CRC, 2006). The first chapter of the book, which is entitled An Introduction to R'', is completely included in this package, for all other chapters, a vignette containing all data analyses is available.
This package implements an S4 distribution system and estimation methods for parameters of common distribution families. The common d, p, q, r function family for each distribution is enriched with the ll, e, and v counterparts, computing the log-likelihood, performing estimation, and calculating the asymptotic variance - covariance matrix, respectively. Parameter estimation is performed analytically whenever possible.
Auxiliary package for better/faster analytics, visualization, data mining, and machine learning tasks. With a wide variety of family functions, like Machine Learning, Data Wrangling, Marketing Mix Modeling (Robyn), Exploratory, API, and Scrapper, it helps the analyst or data scientist to get quick and robust results, without the need of repetitive coding or advanced R programming skills.
Performing multiple-class cluster correspondence analysis(MCCCA). The main functions are create.MCCCAdata() to create a list to be applied to MCCCA, MCCCA() to apply MCCCA, and plot.mccca() for visualizing MCCCA result. Methods used in the package refers to Mariko Takagishi and Michel van de Velden (2022)<doi:10.1080/10618600.2022.2035737>.
Transforms, calculates, and presents results from the Mental Health Quality of Life Questionnaire (MHQoL), a measure of health-related quality of life for individuals with mental health conditions. Provides scoring functions, summary statistics, and visualization tools to facilitate interpretation. For more details see van Krugten et al.(2022) <doi:10.1007/s11136-021-02935-w>.
Posterior distribution of case-control fine-mapping. Specifically, Bayesian variable selection for single-nucleotide polymorphism (SNP) data using the normal-gamma prior. Alenazi A.A., Cox A., Juarez M,. Lin W-Y. and Walters, K. (2019) Bayesian variable selection using partially observed categorical prior information in fine-mapping association studies, Genetic Epidemiology. <doi:10.1002/gepi.22213>.
Algorithms for ordinal causal discovery. This package aims to enable users to discover causality for observational ordinal categorical data with greedy and exhaustive search. See Ni, Y., & Mallick, B. (2022) <https://proceedings.mlr.press/v180/ni22a/ni22a.pdf> "Ordinal Causal Discovery. Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, (UAI 2022), PMLR 180:1530â 1540".
Computes power and level tables for goodness-of-fit tests for the normal, Laplace, and uniform distributions. Generates output in LaTeX format to facilitate reporting and reproducibility. Explanatory graphs help visualize the statistical power of test statistics under various alternatives. For more details, see Lafaye De Micheaux and Tran (2016) <doi:10.18637/jss.v069.i03>.
The modeling and prediction of graph-associated time series(GATS) based on continuous time quantum walk. This software is mainly used for feature extraction, modeling, prediction and result evaluation of GATS, including continuous time quantum walk simulation, feature selection, regression analysis, time series prediction, and series fit calculation. A paper is attached to the package for reference.
This package provides functions to non-parametrically estimate the off-pulse interval of a source function originating from a pulsar. The technique is based on a sequential application of P-values obtained from goodness-of-fit tests for the uniform distribution, such as the Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling and Rayleigh goodness-of-fit tests.
Simulates and plots quantities of interest (relative hazards, first differences, and hazard ratios) for linear coefficients, multiplicative interactions, polynomials, penalised splines, and non-proportional hazards, as well as stratified survival curves from Cox Proportional Hazard models. It also simulates and plots marginal effects for multiplicative interactions. Methods described in Gandrud (2015) <doi:10.18637/jss.v065.i03>.
This statistical method uses the nearest neighbor algorithm to estimate absolute distances between single cells based on a chosen constellation of surface proteins, with these distances being a measure of the similarity between the two cells being compared. Based on Sen, N., Mukherjee, G., and Arvin, A.M. (2015) <DOI:10.1016/j.ymeth.2015.07.008>.
Based on STATA xtsum command, it is used to compute summary statistics for a panel data set. It generates overall, between-group, and within-group statistics for specified variables in a panel data set, as presented in S. Porter (2023) <https://stephenporter.org/files/xtsum_handout.pdf>, StataCorp (2023) <https://www.stata.com/manuals/xtxtsum.pdf>.
lpNet aims at infering biological networks, in particular signaling and gene networks. For that it takes perturbation data, either steady-state or time-series, as input and generates an LP model which allows the inference of signaling networks. For parameter identification either leave-one-out cross-validation or stratified n-fold cross-validation can be used.
This package provides a comprehensive library for date-time manipulations using a new family of orthogonal date-time classes (durations, time points, zoned-times, and calendars) that partition responsibilities so that the complexities of time zones are only considered when they are really needed. Capabilities include: date-time parsing, formatting, arithmetic, extraction and updating of components, and rounding.
Relative, generalized, and Erreygers corrected concentration index; plot Lorenz curves; and decompose health inequalities into contributing factors. The package currently works with (generalized) linear models, survival models, complex survey models, and marginal effects probit models. originally forked by Brecht Devleesschauwer from the decomp package (no longer on CRAN), rineq is now maintained by Kaspar Walter Meili. Compared to the earlier rineq version on github by Brecht Devleesschauwer (<https://github.com/brechtdv/rineq>), the regression tree functionality has been removed. Improvements compared to earlier versions include improved plotting of decomposition and concentration, added functionality to calculate the concentration index with different methods, calculation of robust standard errors, and support for the decomposition analysis using marginal effects probit regression models. The development version is available at <https://github.com/kdevkdev/rineq>.
This package provides an R interface for the Bureau of Economic Analysis (BEA) API (see <http://www.bea.gov/API/bea_web_service_api_user_guide.htm> for more information) that serves two core purposes - 1. To Extract/Transform/Load data [beaGet()] from the BEA API as R-friendly formats in the user's work space [transformation done by default in beaGet() can be modified using optional parameters; see, too, bea2List(), bea2Tab()]. 2. To enable the search of descriptive meta data [beaSearch()]. Other features of the library exist mainly as intermediate methods or are in early stages of development. Important Note - You must have an API key to use this library. Register for a key at <http://www.bea.gov/API/signup/index.cfm> .
Numerous functions for cohort-based analyses, either for prediction or causal inference. For causal inference, it includes Inverse Probability Weighting and G-computation for marginal estimation of an exposure effect when confounders are expected. We deal with binary outcomes, times-to-events, competing events, and multi-state data. For multistate data, semi-Markov model with interval censoring may be considered, and we propose the possibility to consider the excess of mortality related to the disease compared to reference lifetime tables. For predictive studies, we propose a set of functions to estimate time-dependent receiver operating characteristic (ROC) curves with the possible consideration of right-censoring times-to-events or the presence of confounders. Finally, several functions are available to assess time-dependent ROC curves or survival curves from aggregated data.
The formr R package provides a few convenience functions that may be useful to the users of formr (formr.org), an online survey framework which heavily relies on R via openCPU. Some of the functions are for conveniently generating individual feedback graphics, some are just shorthands to make certain common operations in formr more palatable to R novices.
This package provides several cubic spline interpolation methods of H. Akima for irregular and regular gridded data are available through this package, both for the bivariate case and univariate case. Linear interpolation of irregular gridded data is also covered. A bilinear interpolator for regular grids was also added for comparison with the bicubic interpolator on regular grids.
Enables simultaneous statistical inference for the accuracy of multiple classifiers in multiple subgroups (strata). For instance, allows to perform multiple comparisons in diagnostic accuracy studies with co-primary endpoints sensitivity and specificity (Westphal M, Zapf A. Statistical inference for diagnostic test accuracy studies with multiple comparisons. Statistical Methods in Medical Research. 2024;0(0). <doi:10.1177/09622802241236933>).
Extension of cmprsk to Stratified and Clustered data. A goodness of fit test for Fine-Gray model is also provided. Methods are detailed in the following articles: Zhou et al. (2011) <doi:10.1111/j.1541-0420.2010.01493.x>, Zhou et al. (2012) <doi:10.1093/biostatistics/kxr032>, Zhou et al. (2013) <doi: 10.1002/sim.5815>.