This package provides a collection of measures for measuring ecological diversity. Ecological diversity comes in two flavors: alpha diversity measures the diversity within a single site or sample, and beta diversity measures the diversity across two sites or samples. This package overlaps considerably with other R packages such as vegan', gUniFrac
', betapart', and fossil'. We also include a wide range of functions that are implemented in software outside the R ecosystem, such as scipy', Mothur', and scikit-bio'. The implementations here are designed to be basic and clear to the reader.
An interface to the Briq API <https://briq.github.io>. Briq is a tool that aims to promote employee engagement by helping employees recognize and reward each other. Employees can praise and thank one another (for achieving a company goal, for example) by giving virtual credits (known as briqs or bqs') that can be redeemed for various rewards. The Briq API lets you create, read, update and delete users, user groups, transactions and messages. This package provides functions that simplify getting the users, user groups and transactions of your organization into R.
The goal of cvsem is to provide functions that allow for comparing Structural Equation Models (SEM) using cross-validation. Users can specify multiple SEMs using lavaan syntax. cvsem computes the Kullback Leibler (KL) Divergence between 1) the model implied covariance matrix estimated from the training data and 2) the sample covariance matrix estimated from the test data described in Cudeck, Robert & Browne (1983) <doi:10.18637/jss.v048.i02>. The KL Divergence is computed for each of the specified SEMs allowing for the models to be compared based on their prediction errors.
This package provides a specific and comprehensive framework for the analyses of time-to-event data in agriculture. Fit non-parametric and parametric time-to-event models. Compare time-to-event curves for different experimental groups. Plots and other displays. It is particularly tailored to the analyses of data from germination and emergence assays. The methods are described in Onofri et al. (2020) "A unified framework for the analysis of germination, emergence, and other time-to-event data in weed science"", Weed Science, 70, 259-271 <doi:10.1017/wsc.2022.8>.
This package provides a facility to generate efficient designs for order-of-additions experiments under pair-wise-order model, see Dennis K. J. Lin and Jiayu Peng (2019)."Order-of-addition experiments: A review and some new thoughts". Quality Engineering, 31:1, 49-59, <doi:10.1080/08982112.2018.1548021>. It also provides a facility to generate component orthogonal arrays under component position model, see Jian-Feng Yang, Fasheng Sun & Hongquan Xu (2020): "A Component Position Model, Analysis and Design for Order-of-Addition Experiments". Technometrics, <doi:10.1080/00401706.2020.1764394>.
Automatic generation of exams based on exercises in Markdown or LaTeX
format, possibly including R code for dynamic generation of exercise elements. Exercise types include single-choice and multiple-choice questions, arithmetic problems, string questions, and combinations thereof (cloze). Output formats include standalone files (PDF, HTML, Docx, ODT, ...), Moodle XML, QTI 1.2, QTI 2.1, Blackboard, Canvas, OpenOlat
, ILIAS, TestVision
, Particify, ARSnova, Kahoot!, Grasple, and TCExam. In addition to fully customizable PDF exams, a standardized PDF format (NOPS) is provided that can be printed, scanned, and automatically evaluated.
This package implements the Generalized Method of Wavelet Moments with Exogenous Inputs estimator (GMWMX) presented in Cucci, D. A., Voirol, L., Kermarrec, G., Montillet, J. P., and Guerrier, S. (2023) <doi:10.1007/s00190-023-01702-8>. The GMWMX estimator allows to estimate functional and stochastic parameters of linear models with correlated residuals. The gmwmx package provides functions to estimate, compare and analyze models, utilities to load and work with Global Navigation Satellite System (GNSS) data as well as methods to compare results with the Maximum Likelihood Estimator (MLE) implemented in Hector.
This package provides tools to download comprehensive datasets of local, state, and federal election results in Germany from 1990 to 2021. The package facilitates access to data on turnout, vote shares for major parties, and demographic information across different levels of government (municipal, state, and federal). It offers access to geographically harmonized datasets that account for changes in municipal boundaries over time and incorporate mail-in voting districts. Users can easily retrieve, clean, and standardize German electoral data, making it ready for analysis. Data is sourced from <http://www.german-elections.com>.
This package provides a guidance system for analysis with missing data. It incorporates expert, up-to-date methodology to help researchers choose the most appropriate analysis approach when some data are missing. You provide the available data and the assumed causal structure, including the likely causes of missing data. midoc will advise which analysis approaches can be used, and how best to perform them. midoc follows the framework for the treatment and reporting of missing data in observational studies (TARMOS). Lee et al (2021). <doi:10.1016/j.jclinepi.2021.01.008>.
Enables the creation of Chain Event Graphs over spatial areas, with an optional Shiny user interface. Allows users to fully customise both the structure and underlying model of the Chain Event Graph, offering a high degree of flexibility for tailored analyses. For more details on Chain Event Graphs, see Freeman, G., & Smith, J. Q. (2011) <doi:10.1016/j.jmva.2011.03.008>, Collazo R. A., Görgen C. and Smith J. Q. (2018, ISBN:9781498729604) and Barclay, L. M., Hutton, J. L., & Smith, J. Q. (2014) <doi:10.1214/13-BA843>.
This package provides an intuitive framework for ad-hoc statistical analysis of 1H-NMR metabolomics by Nightingale Health. It allows to easily explore new metabolomics measurements assayed by Nightingale Health, comparing the distributions with a large Consortium (BBMRI-nl); project previously published metabolic scores [<doi:10.1016/j.ebiom.2021.103764>, <doi:10.1161/CIRCGEN.119.002610>, <doi:10.1038/s41467-019-11311-9>, <doi:10.7554/eLife.63033>
, <doi:10.1161/CIRCULATIONAHA.114.013116>, <doi:10.1007/s00125-019-05001-w>]; and calibrate the metabolic surrogate values to a desired dataset.
This is a implementation of design methods for multi-state reliability demonstration tests (MSRDT) with failure count data, which is associated with the work from the published paper "Multi-state Reliability Demonstration Tests" by Suiyao Chen et al. (2017) <doi:10.1080/08982112.2017.1314493>. It implements two types of MSRDT, multiple periods (MP) and multiple failure modes (MFM). For MP, two different scenarios with criteria on cumulative periods (Cum) or separate periods (Sep) are implemented respectively. It also provides the implementation of conventional design method, namely binomial tests for failure count data.
The Iterative Proportional Fitting (IPF) algorithm operates on count data. This package offers implementations for several algorithms that extend this to nested structures: parent and child items for both of which constraints can be provided. The fitting algorithms include Iterative Proportional Updating <https://trid.trb.org/view/881554>, Hierarchical IPF <doi:10.3929/ethz-a-006620748>, Entropy Optimization <https://trid.trb.org/view/881144>, and Generalized Raking <doi:10.2307/2290793>. Additionally, a number of replication methods is also provided such as Truncate, replicate, sample <doi:10.1016/j.compenvurbsys.2013.03.004>.
The aim of nosoi (pronounced no.si) is to provide a flexible agent-based stochastic transmission chain/epidemic simulator (Lequime et al. Methods in Ecology and Evolution 11:1002-1007). It is named after the daimones of plague, sickness and disease that escaped Pandora's jar in the Greek mythology. nosoi is able to take into account the influence of multiple variable on the transmission process (e.g. dual-host systems (such as arboviruses), within-host viral dynamics, transportation, population structure), alone or taken together, to create complex but relatively intuitive epidemiological simulations.
This package provides methods for fitting bivariate lines in allometry using the major axis (MA) or standardised major axis (SMA), and for making inferences about such lines. The available methods of inference include confidence intervals and one-sample tests for slope and elevation, testing for a common slope or elevation amongst several allometric lines, constructing a confidence interval for a common slope or elevation, and testing for no shift along a common axis, amongst several samples. See Warton et al. 2012 <doi:10.1111/j.2041-210X.2011.00153.x> for methods description.
The current version of this package estimates spatial autoregressive models for binary dependent variables using GMM estimators <doi:10.18637/jss.v107.i08>. It supports one-step (Pinkse and Slade, 1998) <doi:10.1016/S0304-4076(97)00097-3> and two-step GMM estimator along with the linearized GMM estimator proposed by Klier and McMillen
(2008) <doi:10.1198/073500107000000188>. It also allows for either Probit or Logit model and compute the average marginal effects. All these models are presented in Sarrias and Piras (2023) <doi:10.1016/j.jocm.2023.100432>.
Models categorical time series through a Markov Chain when a) covariates are predictors for transitioning into the next state/symbol and b) when the dependence in the past states has variable length. The probability of transitioning to the next state in the Markov Chain is defined by a multinomial regression whose parameters depend on the past states of the chain and, moreover, the number of states in the past needed to predict the next state also depends on the observed states themselves. See Zambom, Kim, and Garcia (2022) <doi:10.1111/jtsa.12615>.
RtAudio is a set of C++ classes that provides a common API for real-time audio input/output. It was designed with the following objectives:
object-oriented C++ design
simple, common API across all supported platforms
only one source and one header file for easy inclusion in programming projects
allow simultaneous multi-api support
support dynamic connection of devices
provide extensive audio device parameter control
allow audio device capability probing
automatic internal conversion for data format, channel number compensation, (de)interleaving, and byte-swapping
Facilitate the analysis of data related to aquatic ecology, specifically the establishment of carbon budget. Currently, the package allows the below analysis. (i) the calculation of greenhouse gas flux based on data obtained from trace gas analyzer using the method described in Lin et al. (2024). (ii) the calculation of Dissolved Oxygen (DO) metabolism based on data obtained from dissolved oxygen data logger using the method described in Staehr et al. (2010). Yong et al. (2024) <doi:10.5194/bg-21-5247-2024>. Staehr et al. (2010) <doi:10.4319/lom.2010.8.0628>.
This package provides a highly scientific and utterly addictive bird point count simulator to test statistical assumptions, aid survey design, and have fun while doing it (Solymos 2024 <doi:10.1007/s42977-023-00183-2>). The simulations follow time-removal and distance sampling models based on Matsuoka et al. (2012) <doi:10.1525/auk.2012.11190>, Solymos et al. (2013) <doi:10.1111/2041-210X.12106>, and Solymos et al. (2018) <doi:10.1650/CONDOR-18-32.1>, and sound attenuation experiments by Yip et al. (2017) <doi:10.1650/CONDOR-16-93.1>.
This package provides a small set of functions for managing R environments, with defaults designed to encourage usage patterns that scale well to larger code bases. It provides: import_from()
, a flexible way to assign bindings that defaults to the current environment; include()
, a vectorized alternative to base::source()
that also default to the current environment; and attach_eval()
and attach_source()
, a way to evaluate expressions in attached environments. Together, these (and other) functions pair to provide a robust alternative to base::library()
and base::source()
.
This package provides a convenient R interface to the Genotype-Tissue Expression (GTEx) Portal API. The GTEx project is a comprehensive public resource for studying tissue-specific gene expression and regulation in human tissues. Through systematic analysis of RNA sequencing data from 54 non-diseased tissue sites across nearly 1000 individuals, GTEx provides crucial insights into the relationship between genetic variation and gene expression. This data is accessible through the GTEx Portal API enabling programmatic access to human gene expression data. For more information on the API, see <https://gtexportal.org/api/v2/redoc>.
Tree height is an important dendrometric variable and forms the basis of vertical structure of a forest stand. This package will help to fit and validate various non-linear height diameter models for assessing the underlying relationship that exists between tree height and diameter at breast height in case of conifer trees. This package has been implemented on Naslund, Curtis, Michailoff, Meyer, Power, Michaelis-Menten and Wykoff non linear models using algorithm of Huang et al. (1992) <doi:10.1139/x92-172> and Zeide et al. (1993) <doi:10.1093/forestscience/39.3.594>.
All the data and functions used to produce the book. We do not expect most people to use the package for any other reason than to get simple access to the JAGS model files, the data, and perhaps run some of the simple examples. The authors of the book are David Lucy (now sadly deceased) and James Curran. It is anticipated that a manuscript will be provided to Taylor and Francis around February 2020, with bibliographic details to follow at that point. Until such time, further information can be obtained by emailing James Curran.