provides a functions for generating spectra libraries that can be used for MRM SRM MS workflows in proteomics. The package provides a BiblioSpec reader, a function which can add the protein information using a FASTA formatted amino acid file, and an export method for using the created library in the Spectronaut software. The package is developed, tested and used at the Functional Genomics Center Zurich <https://fgcz.ch>.
Hydrological modelling tools developed at INRAE-Antony (HYCAR Research Unit, France). The package includes several conceptual rainfall-runoff models (GR4H, GR5H, GR4J, GR5J, GR6J, GR2M, GR1A) that can be applied either on a lumped or semi-distributed way. A snow accumulation and melt model (CemaNeige) and the associated functions for the calibration and evaluation of models are also included. Use help(airGR) for package description and references.
Assess whether and how a specific continuous or categorical exposure affects the outcome of interest through one- or multi-dimensional mediators using an adaptive bootstrap (AB) approach. The AB method allows to make inference for composite null hypotheses of no mediation effect, providing valid type I error control and thus optimizes statistical power. For more technical details, refer to He, Song and Xu (2024) <doi:10.1093/jrsssb/qkad129>.
Estimates survival and mortality with covariates from census or capture-recapture/recovery data in a Bayesian framework when many individuals are of unknown age. It includes tools for data checking, model diagnostics and outputs such as life-tables and plots, as described in Colchero, Jones, and Rebke (2012) <doi:10.1111/j.2041-210X.2012.00186.x> and Colchero et al. (2021) <doi:10.1038/s41467-021-23894-3>.
This package provides a platform is provided for interactive analyses with a goal of totally easy to develop, deploy, interact, and explore (TEDDIE). Using this package, users can create customized analyses and make them available to end users who can perform interactive analyses and save analyses to RTF or HTML files. It allows developers to focus on R code for analysis, instead of dealing with html or shiny code.
This package provides a modern view on the principal component analysis biplot with calibrated axes. Create principal component analysis biplots rendered in HTML with significant reactivity embedded within the plot. Furthermore, the traditional biplot view is enhanced by translated axes with inter-class kernel densities superimposed. For more information on biplots, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0).
Analyses gene expression data derived from experiments to detect differentially expressed genes by employing the concept of majority voting with five different statistical models. It includes functions for differential expression analysis, significance testing, etc. It simplifies the process of uncovering meaningful patterns and trends within gene expression data, aiding researchers in downstream analysis. Boyer, R.S., Moore, J.S. (1991) <doi:10.1007/978-94-011-3488-0_5>.
By adding over-relaxation factor to PXEM (Parameter Expanded Expectation Maximization) method, the MOPXEM (Monotonically Overrelaxed Parameter Expanded Expectation Maximization) method is obtained. Compare it with the existing EM (Expectation-Maximization)-like methods. Then, distribute and process five methods and compare them, achieving good performance in convergence speed and result quality.The philosophy of the package is described in Guo G. (2022) <doi:10.1007/s00180-022-01270-z>.
This package implements the locally efficient doubly robust difference-in-differences (DiD) estimators for the average treatment effect proposed by Sant'Anna and Zhao (2020) <doi:10.1016/j.jeconom.2020.06.003>. The estimator combines inverse probability weighting and outcome regression estimators (also implemented in the package) to form estimators with more attractive statistical properties. Two different estimation methods can be used to estimate the nuisance functions.
This package implements general unilateral loading estimator for two-layer latent factor models with smooth, element-wise factor transformations. We provide data simulation, loading estimation,finite-sample error bounds, and diagnostic tools for zero-mean and sub-Gaussian assumptions. A unified interface is given for evaluating estimation accuracy and cosine similarity. The philosophy of the package is described in Guo G. (2026) <doi:10.1016/j.apm.2025.116280>.
Decode elements of the Australian Higher Education Information Management System (HEIMS) data for clarity and performance. HEIMS is the record system of the Department of Education, Australia to record enrolments and completions in Australia's higher education system, as well as a range of relevant information. For more information, including the source of the data dictionary, see <http://heimshelp.education.gov.au/sites/heimshelp/dictionary/pages/data-element-dictionary>.
Flexible procedures to compute local density-based outlier scores for ranking outliers. Both exact and approximate nearest neighbor search can be implemented, while also accommodating multiple neighborhood sizes and four different local density-based methods. It allows for referencing a random subsample of the input data or a user specified reference data set to compute outlier scores against, so both unsupervised and semi-supervised outlier detection can be implemented.
This package provides methods and tools for deriving spatial summary functions from single-cell imaging data and performing functional data analyses. Functions can be applied to other single-cell technologies such as spatial transcriptomics. Functional regression and functional principal component analysis methods are in the refund package <https://cran.r-project.org/package=refund> while calculation of the spatial summary functions are from the spatstat package <https://spatstat.org/>.
Calculates and differentiates probabilities and density of (conditional) multivariate normal distribution and Gaussian copula (with various marginal distributions) using methods described in A. Genz (2004) <doi:10.1023/B:STCO.0000035304.20635.31>, A. Genz, F. Bretz (2009) <doi:10.1007/978-3-642-01689-9>, H. I. Gassmann (2003) <doi:10.1198/1061860032283> and E. Kossova, B. Potanin (2018) <https://ideas.repec.org/a/ris/apltrx/0346.html>.
Test-based Image structural similarity measure and test of independence. This package implements the key functions of two tasks: (1) computing image structural similarity measure PSSIM of Wang, Maldonado and Silwal (2011) <DOI:10.1016/j.csda.2011.04.021>; and (2) test of independence between a response and a covariate in presence of heteroscedastic treatment effects proposed by Wang, Tolos, and Wang (2010) <DOI:10.1002/cjs.10068>.
This package provides various styles of function chaining methods: Pipe operator, Pipe object, and pipeline function, each representing a distinct pipeline model yet sharing almost a common set of features: A value can be piped to the first unnamed argument of a function and to dot symbol in an enclosed expression. The syntax is designed to make the pipeline more readable and friendly to a wide range of operations.
This package provides a novel pseudo-value regression approach for the differential co-expression network analysis in expression data, which can incorporate additional clinical variables in the model. This is a direct regression modeling for the differential network analysis, and it is therefore computationally amenable for the most users. The full methodological details can be found in Ahn S et al (2023) <doi:10.1186/s12859-022-05123-w>.
An implementation of the one-step privacy-protecting method for estimating the overall and site-specific hazard ratios using inverse probability weighted Cox models in distributed data network studies, as proposed by Shu, Yoshida, Fireman, and Toh (2019) <doi: 10.1177/0962280219869742>. This method only requires sharing of summary-level riskset tables instead of individual-level data. Both the conventional inverse probability weights and the stabilized weights are implemented.
Support package for the textbook "An Introduction to Quantitative Text Analysis for Linguists: Reproducible Research Using R" (Francom, 2024) <doi:10.4324/9781003393764>. Includes functions to acquire, clean, and analyze text data as well as functions to document and share the results of text analysis. The package is designed to be used in conjunction with the book, but can also be used as a standalone package for text analysis.
Inferring causation from spatial cross-sectional data through empirical dynamic modeling (EDM), with methodological extensions including geographical convergent cross mapping from Gao et al. (2023) <doi:10.1038/s41467-023-41619-6>, as well as the spatial causality test following the approach of Herrera et al. (2016) <doi:10.1111/pirs.12144>, together with geographical pattern causality proposed in Zhang et al. (2025) <doi:10.1080/13658816.2025.2581207>.
Spatial transcriptomics iterative hierarchical clustering ('stIHC'), is a method for identifying spatial gene co-expression modules, defined as groups of genes with shared spatial expression patterns. The method is applicable across spatial transcriptomics technologies with differing spatial resolution, and provides a framework for investigating the spatial organisation of gene expression in tissues. For further details, see Higgins C., Li J.J., Carey M. <doi:10.1002/qub2.70011>.
Data related to the Salem Witch Trials Datasets and tutorials documenting the witch accusations and trials centered around Salem, Massachusetts in 1692. Originally assembled by Richard B. Latner of Tulane University for his website <https://www2.tulane.edu/~salem/index.html>. The data sets include information on 152 accused witches, members of the Salem Village Committee, signatories of petitions related to the events, and tax data for Salem Village.
Imbalanced training datasets impede many popular classifiers. To balance training data, a combination of oversampling minority classes and undersampling majority classes is useful. This package implements the SCUT (SMOTE and Cluster-based Undersampling Technique) algorithm as described in Agrawal et. al. (2015) <doi:10.5220/0005595502260234>. Their paper uses model-based clustering and synthetic oversampling to balance multiclass training datasets, although other resampling methods are provided in this package.
This package provides functions for simplified emulation of time series computer model output in model parameter space using Gaussian processes. Stilt can be used more generally for Kriging of spatio-temporal fields. There are functions to predict at new parameter settings, to test the emulator using cross-validation (which includes information on 95% confidence interval empirical coverage), and to produce contour plots over 2D slices in model parameter space.