BiFET identifies transcription factors (TFs) whose footprints are over-represented in target regions compared to background regions after correcting for the bias arising from the imbalance in read counts and GC contents between the target and background regions. For a given TF k, BiFET tests the null hypothesis that the target regions have the same probability of having footprints for the TF k as the background regions while correcting for the read count and GC content bias.
The package aims to identify miRNA sponge or ceRNA modules in heterogeneous data. It provides several functions to study miRNA sponge modules at single-sample and multi-sample levels, including popular methods for inferring gene modules (candidate miRNA sponge or ceRNA modules), and two functions to identify miRNA sponge modules at single-sample and multi-sample levels, as well as several functions to conduct modular analysis of miRNA sponge modules.
This package contains functions for the MCMC simulation of dyadic network models j2 (Zijlstra, 2017, <doi:10.1080/0022250X.2017.1387858>) and p2 (Van Duijn, Snijders & Zijlstra, 2004, <doi: 10.1046/j.0039-0402.2003.00258.x>), the multilevel p2 model (Zijlstra, Van Duijn & Snijders (2009) <doi: 10.1348/000711007X255336>), and the bidirectional (multilevel) counterpart of the the multilevel p2 model as described in Zijlstra, Van Duijn & Snijders (2009) <doi: 10.1348/000711007X255336>, the (multilevel) b2 model.
Efficient procedures for fitting the DD-PCA (Ke et al., 2019, <arXiv:1906.00051>) by decomposing a large covariance matrix into a low-rank matrix plus a diagonally dominant matrix. The implementation of DD-PCA includes the convex approach using the Alternating Direction Method of Multipliers (ADMM) and the non-convex approach using the iterative projection algorithm. Applications of DD-PCA to large covariance matrix estimation and global multiple testing are also included in this package.
Joint dimension reduction and spatial clustering is conducted for Single-cell RNA sequencing and spatial transcriptomics data, and more details can be referred to Wei Liu, Xu Liao, Yi Yang, Huazhen Lin, Joe Yeong, Xiang Zhou, Xingjie Shi and Jin Liu. (2022) <doi:10.1093/nar/gkac219>. It is not only computationally efficient and scalable to the sample size increment, but also is capable of choosing the smoothness parameter and the number of clusters as well.
Simulates cyclic voltammetry, linear-sweep voltammetry (both with and without stirring of the solution), and single-pulse and double-pulse chronoamperometry and chronocoulometry experiments using the implicit finite difference method outlined in Gosser (1993, ISBN: 9781560810261) and in Brown (2015) <doi:10.1021/acs.jchemed.5b00225>. Additional functions provide ways to display and to examine the results of these simulations. The primary purpose of this package is to provide tools for use in courses in analytical chemistry.
This package provides a very flexible framework for building server side logic in R. The framework is unopinionated when it comes to how HTTP requests and WebSocket messages are handled and supports all levels of app complexity; from serving static content to full-blown dynamic web-apps. Fiery does not hold your hand as much as e.g. the shiny package does, but instead sets you free to create your web app the way you want.
This package provides a novel forward stepwise discriminant analysis framework that integrates Pillai's trace with Uncorrelated Linear Discriminant Analysis (ULDA), providing an improvement over traditional stepwise LDA methods that rely on Wilks Lambda. A stand-alone ULDA implementation is also provided, offering a more general solution than the one available in the MASS package. It automatically handles missing values and provides visualization tools. For more details, see Wang (2024) <doi:10.48550/arXiv.2409.03136>.
Several functions that allow by different methods to infer a piecewise polynomial regression model under regularity constraints, namely continuity or differentiability of the link function. The implemented functions are either specific to data with two regimes, or generic for any number of regimes, which can be given by the user or learned by the algorithm. A paper describing all these methods will be submitted soon. The reference will be added to this file as soon as available.
This package provides implementation of various correlation coefficients of common use in Information Retrieval. In particular, it includes Kendall (1970, isbn:0852641990) tau coefficient as well as tau_a and tau_b for the treatment of ties. It also includes Yilmaz et al. (2008) <doi:10.1145/1390334.1390435> tauAP correlation coefficient, and versions tauAP_a and tauAP_b developed by Urbano and Marrero (2017) <doi:10.1145/3121050.3121106> to cope with ties.
These functions take a gene expression value matrix, a primary covariate vector, an additional known covariates matrix. A two stage analysis is applied to counter the effects of latent variables on the rankings of hypotheses. The estimation and adjustment of latent effects are proposed by Sun, Zhang and Owen (2011). "leapp" is developed in the context of microarray experiments, but may be used as a general tool for high throughput data sets where dependence may be involved.
The functions are designed to find the efficient mean-variance frontier or portfolio weights for static portfolio (called Markowitz portfolio) analysis in resource economics or nature conservation. Using the nonlinear programming solver ('Rsolnp'), this package deals with the quadratic minimization of the variance-covariances without shorting (i.e., non-negative portfolio weights) studied in Ando and Mallory (2012) <doi:10.1073/pnas.1114653109>. See the examples, testing versions, and more details from: <https://github.com/ysd2004/portn>.
This is a core implementation of SAS procedures for linear models - GLM, REG, ANOVA, TTEST, FREQ, and UNIVARIATE. Some R packages provide type II and type III SS. However, the results of nested and complex designs are often different from those of SAS. Different results does not necessarily mean incorrectness. However, many wants the same results to SAS. This package aims to achieve that. Reference: Littell RC, Stroup WW, Freund RJ (2002, ISBN:0-471-22174-0).
Simple tabulation should be dead simple. This package is an opinionated approach to easy tabulations while also providing exact numbers and allowing for re-usability. This is achieved by providing tabulations as data.frames with columns for values, optional variable names, frequency counts including and excluding NAs and percentages for counts including and excluding NAs. Also values are automatically sorted by in decreasing order of frequency counts to allow for fast skimming of the most important information.
Random generation of survival data from a wide range of regression models, including accelerated failure time (AFT), proportional hazards (PH), proportional odds (PO), accelerated hazard (AH), Yang and Prentice (YP), and extended hazard (EH) models. The package rsurv also stands out by its ability to generate survival data from an unlimited number of baseline distributions provided that an implementation of the quantile function of the chosen baseline distribution is available in R. Another nice feature of the package rsurv lies in the fact that linear predictors are specified via a formula-based approach, facilitating the inclusion of categorical variables and interaction terms. The functions implemented in the package rsurv can also be employed to simulate survival data with more complex structures, such as survival data with different types of censoring mechanisms, survival data with cure fraction, survival data with random effects (frailties), multivariate survival data, and competing risks survival data. Details about the R package rsurv can be found in Demarqui (2024) <doi:10.48550/arXiv.2406.01750>.
Expression levels of mRNA molecules are regulated by different processes, comprising inhibition or activation by transcription factors and post-transcriptional degradation by microRNAs. birta (Bayesian Inference of Regulation of Transcriptional Activity) uses the regulatory networks of transcription factors and miRNAs together with mRNA and miRNA expression data to predict switches in regulatory activity between two conditions. A Bayesian network is used to model the regulatory structure and Markov-Chain-Monte-Carlo is applied to sample the activity states.
This package provides a high-level R interface to data files written using Unidata's netCDF library (version 4 or earlier), which are binary data files that are portable across platforms and include metadata information in addition to the data sets. Using this package, netCDF files can be opened and data sets read in easily. It is also easy to create new netCDF dimensions, variables, and files, in either version 3 or 4 format, and manipulate existing netCDF files.
RocksDB is a library that forms the core building block for a fast key-value server, especially suited for storing data on flash drives. It has a Log-Structured-Merge-Database (LSM) design with flexible tradeoffs between Write-Amplification-Factor (WAF), Read-Amplification-Factor (RAF) and Space-Amplification-Factor (SAF). It has multi-threaded compactions, making it specially suitable for storing multiple terabytes of data in a single database. RocksDB is partially based on LevelDB.
An R package that offers a workflow to predict condition-specific enhancers from ChIP-seq data. The prediction of regulatory units is done in four main steps: Step 1 - the normalization of the ChIP-seq counts. Step 2 - the prediction of active enhancers binwise on the whole genome. Step 3 - the condition-specific clustering of the putative active enhancers. Step 4 - the detection of possible target genes of the condition-specific clusters using RNA-seq counts.
An implementation of the model in Steorts (2015) <DOI:10.1214/15-BA965SI>, which performs Bayesian entity resolution for categorical and text data, for any distance function defined by the user. In addition, the precision and recall are in the package to allow one to compare to any other comparable method such as logistic regression, Bayesian additive regression trees (BART), or random forests. The experiments are reproducible and illustrated using a simple vignette. LICENSE: GPL-3 + file license.
Estimates the Concordance Correlation Coefficient to assess agreement. The scenarios considered are non-repeated measures, non-longitudinal repeated measures (replicates) and longitudinal repeated measures. It also includes the estimation of the one-way intraclass correlation coefficient also known as reliability index. The estimation approaches implemented are variance components and U-statistics approaches. Description of methods can be found in Fleiss (1986) <doi:10.1002/9781118032923> and Carrasco et al. (2013) <doi:10.1016/j.cmpb.2012.09.002>.
Analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments using nonlinear mixed-effects regression models and analysis of the results. FRApp is not limited to the analysis of FRAP experiments only. Any nonlinear mixed-effects models with an asymptotic exponential functional relationship to hierarchical data in various domains can be fitted. The analysis of data available in the package is presented in Di Credico, G., Pelucchi, S., Pauli, F. et al. (2025) <doi:10.1038/s41598-025-87154-w>.
Diagnostic plots for optimisation, with a focus on projection pursuit. These show paths the optimiser takes in the high-dimensional space in multiple ways: by reducing the dimension using principal component analysis, and also using the tour to show the path on the high-dimensional space. Several botanical colour palettes are included, reflecting the name of the package. A paper describing the methodology can be found at <https://journal.r-project.org/articles/RJ-2021-105/index.html>.
Set of functions designed to solve inverse problems. The direct problem is used to calculate a cost function to be minimized. Here are listed some papers using Inverse Problems solvers and sensitivity analysis: (Jader Lugon Jr.; Antonio J. Silva Neto 2011) <doi:10.1590/S1678-58782011000400003>. (Jader Lugon Jr.; Antonio J. Silva Neto; Pedro P.G.W. Rodrigues 2008) <doi:10.1080/17415970802082864>. (Jader Lugon Jr.; Antonio J. Silva Neto; Cesar C. Santana 2008) <doi:10.1080/17415970802082922>.