In causal mediation analysis with multiple causally ordered mediators, a set of path-specific effects are identified under standard ignorability assumptions. This package implements an imputation approach to estimating these effects along with a set of bias formulas for conducting sensitivity analysis (Zhou and Yamamoto <doi:10.31235/osf.io/2rx6p>). It contains two main functions: paths() for estimating path-specific effects and sens() for conducting sensitivity analysis. Estimation uncertainty is quantified using the nonparametric bootstrap.
Computes noncompartmental pharmacokinetic parameters for drug concentration profiles. For each profile, data imputations and adjustments are made as necessary and basic parameters are estimated. Supports single dose, multi-dose, and multi-subject data. Supports steady-state calculations and various routes of drug administration. See ?qpNCA and vignettes. Methodology follows Rowland and Tozer (2011, ISBN:978-0-683-07404-8), Gabrielsson and Weiner (1997, ISBN:978-91-9765-100-4), and Gibaldi and Perrier (1982, ISBN:978-0824710422).
Holds functions developed by the University of Ottawa's SAiVE (Spatio-temporal Analysis of isotope Variations in the Environment) research group with the intention of facilitating the re-use of code, foster good code writing practices, and to allow others to benefit from the work done by the SAiVE group. Contributions are welcome via the GitHub repository <https://github.com/UO-SAiVE/SAiVE> by group members as well as non-members.
This package provides a system contains easy-to-use tools as a support for time series analysis courses. In particular, it incorporates a technique called Generalized Method of Wavelet Moments (GMWM) as well as its robust implementation for fast and robust parameter estimation of time series models which is described, for example, in Guerrier et al. (2013) <doi: 10.1080/01621459.2013.799920>. More details can also be found in the paper linked to via the URL below.
Supports the calculation of meteorological characteristics in evapotranspiration research and reference crop evapotranspiration, and offers three models to simulate crop evapotranspiration and soil water balance in the field, including single crop coefficient and dual crop coefficient, as well as the Shuttleworth-Wallace model. These calculations main refer to Allen et al.(1998, ISBN:92-5-104219-5), Teh (2006, ISBN:1-58-112-998-X), and Liu et al.(2006) <doi:10.1016/j.agwat.2006.01.018>.
Highest posterior model is widely accepted as a good model among available models. In terms of variable selection highest posterior model is often the true model. Our stochastic search process SAHPM based on simulated annealing maximization method tries to find the highest posterior model by maximizing the model space with respect to the posterior probabilities of the models. This package currently contains the SAHPM method only for linear models. The codes for GLM will be added in future.
An extension for NetSurfP-2.0 (Klausen et al. (2019) <doi:10.1002/prot.25674>) which is specifically designed to analyze the results of bottom-up-proteomics that is primarily analyzed with MaxQuant (Cox, J., Mann, M. (2008) <doi:10.1038/nbt.1511>). This tool is designed to process a large number of yeast peptides that produced as a results of whole yeast cell-proteome digestion and provide a coherent picture of secondary structure of proteins.
An R package that offers a workflow to predict condition-specific enhancers from ChIP-seq data. The prediction of regulatory units is done in four main steps: Step 1 - the normalization of the ChIP-seq counts. Step 2 - the prediction of active enhancers binwise on the whole genome. Step 3 - the condition-specific clustering of the putative active enhancers. Step 4 - the detection of possible target genes of the condition-specific clusters using RNA-seq counts.
Expression levels of mRNA molecules are regulated by different processes, comprising inhibition or activation by transcription factors and post-transcriptional degradation by microRNAs. birta (Bayesian Inference of Regulation of Transcriptional Activity) uses the regulatory networks of transcription factors and miRNAs together with mRNA and miRNA expression data to predict switches in regulatory activity between two conditions. A Bayesian network is used to model the regulatory structure and Markov-Chain-Monte-Carlo is applied to sample the activity states.
This package provides a high-level R interface to data files written using Unidata's netCDF library (version 4 or earlier), which are binary data files that are portable across platforms and include metadata information in addition to the data sets. Using this package, netCDF files can be opened and data sets read in easily. It is also easy to create new netCDF dimensions, variables, and files, in either version 3 or 4 format, and manipulate existing netCDF files.
RocksDB is a library that forms the core building block for a fast key-value server, especially suited for storing data on flash drives. It has a Log-Structured-Merge-Database (LSM) design with flexible tradeoffs between Write-Amplification-Factor (WAF), Read-Amplification-Factor (RAF) and Space-Amplification-Factor (SAF). It has multi-threaded compactions, making it specially suitable for storing multiple terabytes of data in a single database. RocksDB is partially based on LevelDB.
This package provides functions to create simulated time series of environmental exposures (e.g., temperature, air pollution) and health outcomes for use in power analysis and simulation studies in environmental epidemiology. This package also provides functions to evaluate the results of simulation studies based on these simulated time series. This work was supported by a grant from the National Institute of Environmental Health Sciences (R00ES022631) and a fellowship from the Colorado State University Programs for Research and Scholarly Excellence.
Diagnostic plots for optimisation, with a focus on projection pursuit. These show paths the optimiser takes in the high-dimensional space in multiple ways: by reducing the dimension using principal component analysis, and also using the tour to show the path on the high-dimensional space. Several botanical colour palettes are included, reflecting the name of the package. A paper describing the methodology can be found at <https://journal.r-project.org/archive/2021/RJ-2021-105/index.html>.
This package provides a fold change rank based method is presented to search for genes with changing expression and to detect recurrent chromosomal copy number aberrations. This method may be useful for high-throughput biological data (micro-array, sequencing, ...). Probabilities are associated with genes or probes in the data set and there is no problem of multiple tests when using this method. For array-based comparative genomic hybridization data, segmentation results are obtained by merging the significant probes detected.
This package provides tools for studying genotype-phenotype maps for bi-allelic loci underlying quantitative phenotypes. The 0.1 version is released in connection with the publication of Gjuvsland et al (2013) and implements basic line plots and the monotonicity measures for GP maps presented in the paper. Reference: Gjuvsland AB, Wang Y, Plahte E and Omholt SW (2013) Monotonicity is a key feature of genotype-phenotype maps. Frontier in Genetics 4:216 <doi:10.3389/fgene.2013.00216>.
Fits linear regression, logistic and multinomial regression models, Poisson regression, Cox model via Global Adaptive Generative Adjustment Algorithm. For more detailed information, see Bin Wang, Xiaofei Wang and Jianhua Guo (2022) <arXiv:1911.00658>. This paper provides the theoretical properties of Gaga linear model when the load matrix is orthogonal. Further study is going on for the nonorthogonal cases and generalized linear models. These works are in part supported by the National Natural Foundation of China (No.12171076).
Genomic biology is not limited to the confines of the canonical B-forming DNA duplex, but includes over ten different types of other secondary structures that are collectively termed non-B DNA structures. Of these non-B DNA structures, the G-quadruplexes are highly stable four-stranded structures that are recognized by distinct subsets of nuclear factors. This package provide functions for predicting intramolecular G quadruplexes. In addition, functions for predicting other intramolecular nonB DNA structures are included.
An implementation of k-means specifically design to cluster joint trajectories (longitudinal data on several variable-trajectories). Like kml', it provides facilities to deal with missing value, compute several quality criterion (Calinski and Harabatz, Ray and Turie, Davies and Bouldin, BIC,...) and propose a graphical interface for choosing the best number of clusters. In addition, the 3D graph representing the mean joint-trajectories of each cluster can be exported through LaTeX in a 3D dynamic rotating PDF graph.
This package implements the multivariate adaptive shrinkage (mash) method of Urbut et al (2019) <DOI:10.1038/s41588-018-0268-8> for estimating and testing large numbers of effects in many conditions (or many outcomes). Mash takes an empirical Bayes approach to testing and effect estimation; it estimates patterns of similarity among conditions, then exploits these patterns to improve accuracy of the effect estimates. The core linear algebra is implemented in C++ for fast model fitting and posterior computation.
This package provides Scilab n1qn1'. This takes more memory than traditional L-BFGS. The n1qn1 routine is useful since it allows prespecification of a Hessian. If the Hessian is near enough the truth in optimization it can speed up the optimization problem. The algorithm is described in the Scilab optimization documentation located at <https://www.scilab.org/sites/default/files/optimization_in_scilab.pdf>. This version uses manually modified code from f2c to make this a C only binary.
Generate data objects from XML versions of the Swiss Register of Plant Protection Products. An online version of the register can be accessed at <https://www.psm.admin.ch/de/produkte>. There is no guarantee of correspondence of the data read in using this package with that online version, or with the original registration documents. Also, the Federal Food Safety and Veterinary Office, coordinating the authorisation of plant protection products in Switzerland, does not answer requests regarding this package.
Non-negative Matrix Factorization(NMF) is a powerful tool for identifying the key features of microbial communities and a dimension-reduction method. When we are interested in the differences between the structures of two groups of communities, supervised NMF(Yun Cai, Hong Gu and Tobby Kenney (2017),<doi:10.1186/s40168-017-0323-1>) provides a better way to do this, while retaining all the advantages of NMF -- such as interpretability, and being based on a simple biological intuition.
Storm is a distributed real-time computation system. Similar to how Hadoop provides a set of general primitives for doing batch processing, Storm provides a set of general primitives for doing real-time computation. . Storm includes a "Multi-Language" (or "Multilang") Protocol to allow implementation of Bolts and Spouts in languages other than Java. This R extension provides implementations of utility functions to allow an application developer to focus on application-specific functionality rather than Storm/R communications plumbing.
Allows fitting of step-functions to univariate serial data where neither the number of jumps nor their positions is known by implementing the multiscale regression estimators SMUCE, simulataneous multiscale changepoint estimator, (K. Frick, A. Munk and H. Sieling, 2014) <doi:10.1111/rssb.12047> and HSMUCE, heterogeneous SMUCE, (F. Pein, H. Sieling and A. Munk, 2017) <doi:10.1111/rssb.12202>. In addition, confidence intervals for the change-point locations and bands for the unknown signal can be obtained.