_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-bmisc 1.4.8
Propagated dependencies: r-tidyr@1.3.1 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-dplyr@1.1.4 r-data-table@1.17.4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://bcallaway11.github.io/BMisc/
Licenses: GPL 2
Synopsis: Miscellaneous Functions for Panel Data, Quantiles, and Printing Results
Description:

These are miscellaneous functions for working with panel data, quantiles, and printing results. For panel data, the package includes functions for making a panel data balanced (that is, dropping missing individuals that have missing observations in any time period), converting id numbers to row numbers, and to treat repeated cross sections as panel data under the assumption of rank invariance. For quantiles, there are functions to make distribution functions from a set of data points (this is particularly useful when a distribution function is created in several steps), to combine distribution functions based on some external weights, and to invert distribution functions. Finally, there are several other miscellaneous functions for obtaining weighted means, weighted distribution functions, and weighted quantiles; to generate summary statistics and their differences for two groups; and to add or drop covariates from formulas.

r-imabc 1.0.0
Propagated dependencies: r-truncnorm@1.0-9 r-mass@7.3-65 r-lhs@1.2.0 r-foreach@1.5.2 r-data-table@1.17.4
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/carolyner/imabc
Licenses: GPL 3
Synopsis: Incremental Mixture Approximate Bayesian Computation (IMABC)
Description:

This package provides functionality to perform a likelihood-free method for estimating the parameters of complex models that results in a simulated sample from the posterior distribution of model parameters given targets. The method begins with a accept/reject approximate bayes computation (ABC) step applied to a sample of points from the prior distribution of model parameters. Accepted points result in model predictions that are within the initially specified tolerance intervals around the target points. The sample is iteratively updated by drawing additional points from a mixture of multivariate normal distributions, accepting points within tolerance intervals. As the algorithm proceeds, the acceptance intervals are narrowed. The algorithm returns a set of points and sampling weights that account for the adaptive sampling scheme. For more details see Rutter, Ozik, DeYoreo, and Collier (2018) <arXiv:1804.02090>.

r-pupak 0.1.1
Propagated dependencies: r-segmented@2.1-4 r-nls2@0.3-4 r-metrics@0.1.4 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PUPAK
Licenses: GPL 2
Synopsis: Parameter Estimation, and Plot Visualization of Adsorption Kinetic Models
Description:

This package contains model fitting functions for linear and non-linear adsorption kinetic and diffusion models. Adsorption kinetics is used for characterizing the rate of solute adsorption and the time necessary for the adsorption process. Adsorption kinetics offers vital information on adsorption rate, adsorbent performance in response time, and mass transfer processes. In addition, diffusion models are included in the package as solute diffusion affects the adsorption kinetic experiments. This package consists of 20 adsorption and diffusion models, including Pseudo First Order (PFO), Pseudo Second Order (PSO), Elovich, and Weber-Morris model (commonly called the intraparticle model) stated by Plazinski et al. (2009) <doi:10.1016/j.cis.2009.07.009>. This package also contains a summary function where the statistical errors of each model are ranked for a more straightforward determination of the best fit model.

r-sport 0.2.1
Propagated dependencies: r-rcpp@1.0.14 r-ggplot2@3.5.2 r-data-table@1.17.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/gogonzo/sport
Licenses: GPL 2
Synopsis: Sequential Pairwise Online Rating Techniques
Description:

Calculates ratings for two-player or multi-player challenges. Methods included in package such as are able to estimate ratings (players strengths) and their evolution in time, also able to predict output of challenge. Algorithms are based on Bayesian Approximation Method, and they don't involve any matrix inversions nor likelihood estimation. Parameters are updated sequentially, and computation doesn't require any additional RAM to make estimation feasible. Additionally, base of the package is written in C++ what makes sport computation even faster. Methods used in the package refer to Mark E. Glickman (1999) <http://www.glicko.net/research/glicko.pdf>; Mark E. Glickman (2001) <doi:10.1080/02664760120059219>; Ruby C. Weng, Chih-Jen Lin (2011) <https://www.jmlr.org/papers/volume12/weng11a/weng11a.pdf>; W. Penny, Stephen J. Roberts (1999) <doi:10.1109/IJCNN.1999.832603>.

r-csesa 1.2.0
Propagated dependencies: r-biostrings@2.76.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CSESA
Licenses: GPL 2+
Synopsis: CRISPR-Based Salmonella Enterica Serotype Analyzer
Description:

Salmonella enterica is a major cause of bacterial food-borne disease worldwide. Serotype identification is the most commonly used typing method to characterize Salmonella isolates. However, experimental serotyping needs great cost on manpower and resources. Recently, we found that the newly incorporated spacer in the clustered regularly interspaced short palindromic repeat (CRISPR) could serve as an effective marker for typing of Salmonella. It was further revealed by Li et. al (2014) <doi:10.1128/JCM.00696-14> that recognized types based on the combination of two newly incorporated spacer in both CRISPR loci showed high accordance with serotypes. Here, we developed an R package CSESA to predict the serotype based on this finding. Considering itâ s time saving and of high accuracy, we recommend to predict the serotypes of unknown Salmonella isolates using CSESA before doing the traditional serotyping.

r-degre 0.2.0
Propagated dependencies: r-tibble@3.2.1 r-parglm@0.1.7 r-glmmtmb@1.1.11 r-ggrepel@0.9.6 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-foreach@1.5.2 r-dplyr@1.1.4 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DEGRE
Licenses: Artistic License 2.0
Synopsis: Inferring Differentially Expressed Genes using Generalized Linear Mixed Models
Description:

Genes that are differentially expressed between two or more experimental conditions can be detected in RNA-Seq. A high biological variability may impact the discovery of these genes once it may be divergent between the fixed effects. However, this variability can be covered by the random effects. DEGRE was designed to identify the differentially expressed genes considering fixed and random effects on individuals. These effects are identified earlier in the experimental design matrix. DEGRE has the implementation of preprocessing procedures to clean the near zero gene reads in the count matrix, normalize by RLE published in the DESeq2 package, Love et al. (2014) <doi:10.1186/s13059-014-0550-8> and it fits a regression for each gene using the Generalized Linear Mixed Model with the negative binomial distribution, followed by a Wald test to assess the regression coefficients.

r-etrep 1.2.0
Propagated dependencies: r-truncnorm@1.0-9 r-shapes@1.2.7 r-rvcg@0.25 r-rspincalc@1.0.2 r-rotations@1.6.5 r-rgl@1.3.18 r-morpho@2.12 r-matlib@1.0.0 r-fields@16.3.1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/MohsenTaheriShalmani/Elliptical_Tubes
Licenses: Expat
Synopsis: Analysis of Elliptical Tubes Under the Relative Curvature Condition
Description:

Analysis of elliptical tubes with applications in biological modeling. The package is based on the references: Taheri, M., Pizer, S. M., & Schulz, J. (2024) "The Mean Shape under the Relative Curvature Condition." arXiv <doi:10.48550/arXiv.2404.01043>. Mohsen Taheri Shalmani (2024) "Shape Statistics via Skeletal Structures", PhD Thesis, University of Stavanger, Norway <doi:10.13140/RG.2.2.34500.23685>. Key features include constructing discrete elliptical tubes, calculating transformations, validating structures under the Relative Curvature Condition (RCC), computing means, and generating simulations. Supports intrinsic and non-intrinsic mean calculations and transformations, size estimation, plotting, and random sample generation based on a reference tube. The intrinsic approach relies on the interior path of the original non-convex space, incorporating the RCC, while the non-intrinsic approach uses a basic robotic arm transformation that disregards the RCC.

r-speck 1.0.0
Propagated dependencies: r-seurat@5.3.0 r-rsvd@1.0.5 r-matrix@1.7-3 r-magrittr@2.0.3 r-ckmeans-1d-dp@4.3.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SPECK
Licenses: GPL 2+
Synopsis: Receptor Abundance Estimation using Reduced Rank Reconstruction and Clustered Thresholding
Description:

Surface Protein abundance Estimation using CKmeans-based clustered thresholding ('SPECK') is an unsupervised learning-based method that performs receptor abundance estimation for single cell RNA-sequencing data based on reduced rank reconstruction (RRR) and a clustered thresholding mechanism. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2019.05.031>, Butler et al., (2018) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for the RRR is further detailed in: Erichson et al., (2019) <doi:10.18637/jss.v089.i11> and Halko et al., (2009) <arXiv:0909.4061>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.

r-saccr 3.3
Propagated dependencies: r-trading@3.2 r-jsonlite@2.0.0 r-data-tree@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://openriskcalculator.com/
Licenses: GPL 3
Synopsis: SA Counterparty Credit Risk under CRR2
Description:

Computes the Exposure-At-Default based on the standardized approach of CRR2 (SA-CCR). The simplified version of SA-CCR has been included, as well as the OEM methodology. Multiple trade types of all the five major asset classes are being supported including the Other Exposure and, given the inheritance- based structure of the application, the addition of further trade types is straightforward. The application returns a list of trees per Counterparty and CSA after automatically separating the trades based on the Counterparty, the CSAs, the hedging sets, the netting sets and the risk factors. The basis and volatility transactions are also identified and treated in specific hedging sets whereby the corresponding penalty factors are applied. All the examples appearing on the regulatory papers (both for the margined and the unmargined workflow) have been implemented including the latest CRR2 developments.

r-vhcub 1.0.0
Propagated dependencies: r-stringr@1.5.1 r-seqinr@4.2-36 r-ggplot2@3.5.2 r-biostrings@2.76.0
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://cran.r-project.org/package=vhcub
Licenses: GPL 3
Synopsis: Virus-Host Codon Usage Co-Adaptation Analysis
Description:

Analyze the co-adaptation of codon usage between a virus and its host, calculate various codon usage bias measurements as: effective number of codons (ENc) Novembre (2002) <doi:10.1093/oxfordjournals.molbev.a004201>, codon adaptation index (CAI) Sharp and Li (1987) <doi:10.1093/nar/15.3.1281>, relative codon deoptimization index (RCDI) Puigbò et al (2010) <doi:10.1186/1756-0500-3-87>, similarity index (SiD) Zhou et al (2013) <doi:10.1371/journal.pone.0077239>, synonymous codon usage orderliness (SCUO) Wan et al (2004) <doi:10.1186/1471-2148-4-19> and, relative synonymous codon usage (RSCU) Sharp et al (1986) <doi:10.1093/nar/14.13.5125>. Also, it provides a statistical dinucleotide over- and underrepresentation with three different models. Implement several methods for visualization of codon usage as ENc.GC3plot() and PR2.plot().

r-plink 1.5-1
Propagated dependencies: r-statmod@1.5.0 r-mass@7.3-65 r-lattice@0.22-7
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=plink
Licenses: GPL 2+
Synopsis: IRT Separate Calibration Linking Methods
Description:

Item response theory based methods are used to compute linking constants and conduct chain linking of unidimensional or multidimensional tests for multiple groups under a common item design. The unidimensional methods include the Mean/Mean, Mean/Sigma, Haebara, and Stocking-Lord methods for dichotomous (1PL, 2PL and 3PL) and/or polytomous (graded response, partial credit/generalized partial credit, nominal, and multiple-choice model) items. The multidimensional methods include the least squares method and extensions of the Haebara and Stocking-Lord method using single or multiple dilation parameters for multidimensional extensions of all the unidimensional dichotomous and polytomous item response models. The package also includes functions for importing item and/or ability parameters from common IRT software, conducting IRT true score and observed score equating, and plotting item response curves/surfaces, vector plots, information plots, and comparison plots for examining parameter drift.

r-sadeg 1.0.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SADEG
Licenses: GPL 2+ GPL 3+
Synopsis: Stability Analysis in Differentially Expressed Genes
Description:

We analyzed the nucleotide composition of genes with a special emphasis on stability of DNA sequences. Besides, in a variety of different organisms unequal use of synonymous codons, or codon usage bias, occurs which also show variation among genes in the same genome. Seemingly, codon usage bias is affected by both selective constraints and mutation bias which allows and enables us to examine and detect changes in these two evolutionary forces between genomes or along one genome. Therefore, we determined the codon adaptation index (CAI), effective number of codons (ENC) and codon usage analysis with calculation of the relative synonymous codon usage (RSCU), and subsequently predicted the translation efficiency and accuracy through GC-rich codon usages. Furthermore, we estimated the relative stability of the DNA sequence following calculation of the average free energy (Delta G) and Dimer base-stacking energy level.

r-mmeta 3.0.2
Propagated dependencies: r-ggplot2@3.5.2 r-aod@1.3.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mmeta
Licenses: GPL 2+
Synopsis: Multivariate Meta-Analysis
Description:

Multiple 2 by 2 tables often arise in meta-analysis which combines statistical evidence from multiple studies. Two risks within the same study are possibly correlated because they share some common factors such as environment and population structure. This package implements a set of novel Bayesian approaches for multivariate meta analysis when the risks within the same study are independent or correlated. The exact posterior inference of odds ratio, relative risk, and risk difference given either a single 2 by 2 table or multiple 2 by 2 tables is provided. Luo, Chen, Su, Chu, (2014) <doi:10.18637/jss.v056.i11>, Chen, Luo, (2011) <doi:10.1002/sim.4248>, Chen, Chu, Luo, Nie, Chen, (2015) <doi:10.1177/0962280211430889>, Chen, Luo, Chu, Su, Nie, (2014) <doi:10.1080/03610926.2012.700379>, Chen, Luo, Chu, Wei, (2013) <doi:10.1080/19466315.2013.791483>.

r-mable 4.1.1
Propagated dependencies: r-survival@3.8-3 r-rlang@1.1.6 r-quadprog@1.5-8 r-mnormt@2.1.1 r-lowrankqp@1.0.6 r-iterators@1.0.14 r-icenreg@2.0.16 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mable
Licenses: FSDG-compatible
Synopsis: Maximum Approximate Bernstein/Beta Likelihood Estimation
Description:

Fit data from a continuous population with a smooth density on finite interval by an approximate Bernstein polynomial model which is a mixture of certain beta distributions and find maximum approximate Bernstein likelihood estimator of the unknown coefficients. Consequently, maximum likelihood estimates of the unknown density, distribution functions, and more can be obtained. If the support of the density is not the unit interval then transformation can be applied. This is an implementation of the methods proposed by the author of this package published in the Journal of Nonparametric Statistics: Guan (2016) <doi:10.1080/10485252.2016.1163349> and Guan (2017) <doi:10.1080/10485252.2017.1374384>. For data with covariates, under some semiparametric regression models such as Cox proportional hazards model and the accelerated failure time model, the baseline survival function can be estimated smoothly based on general interval censored data.

r-decon 1.3-4
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://cran.r-project.org/web/packages/decon/
Licenses: GPL 3+
Synopsis: Deconvolution Estimation in Measurement Error Models
Description:

This package contains a collection of functions to deal with nonparametric measurement error problems using deconvolution kernel methods. We focus two measurement error models in the package: (1) an additive measurement error model, where the goal is to estimate the density or distribution function from contaminated data; (2) nonparametric regression model with errors-in-variables. The R functions allow the measurement errors to be either homoscedastic or heteroscedastic. To make the deconvolution estimators computationally more efficient in R, we adapt the "Fast Fourier Transform" (FFT) algorithm for density estimation with error-free data to the deconvolution kernel estimation. Several methods for the selection of the data-driven smoothing parameter are also provided in the package. See details in: Wang, X.F. and Wang, B. (2011). Deconvolution estimation in measurement error models: The R package decon. Journal of Statistical Software, 39(10), 1-24.

r-cnorm 3.4.1
Propagated dependencies: r-leaps@3.2 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://www.psychometrica.de/cNorm_en.html
Licenses: AGPL 3
Synopsis: Continuous Norming
Description:

This package provides a comprehensive toolkit for generating continuous test norms in psychometrics and biometrics, and analyzing model fit. The package offers both distribution-free modeling using Taylor polynomials and parametric modeling using the beta-binomial distribution. Originally developed for achievement tests, it is applicable to a wide range of mental, physical, or other test scores dependent on continuous or discrete explanatory variables. The package provides several advantages: It minimizes deviations from representativeness in subsamples, interpolates between discrete levels of explanatory variables, and significantly reduces the required sample size compared to conventional norming per age group. cNORM enables graphical and analytical evaluation of model fit, accommodates a wide range of scales including those with negative and descending values, and even supports conventional norming. It generates norm tables including confidence intervals. It also includes methods for addressing representativeness issues through Iterative Proportional Fitting.

r-dr4pl 2.0.0
Propagated dependencies: r-tensor@1.5 r-rlang@1.1.6 r-rdpack@2.6.4 r-matrix@1.7-3 r-glue@1.8.0 r-ggplot2@3.5.2 r-generics@0.1.4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://bitbucket.org/dittmerlab/dr4pl
Licenses: GPL 2+
Synopsis: Dose Response Data Analysis using the 4 Parameter Logistic (4pl) Model
Description:

Models the relationship between dose levels and responses in a pharmacological experiment using the 4 Parameter Logistic model. Traditional packages on dose-response modelling such as drc and nplr often draw errors due to convergence failure especially when data have outliers or non-logistic shapes. This package provides robust estimation methods that are less affected by outliers and other initialization methods that work well for data lacking logistic shapes. We provide the bounds on the parameters of the 4PL model that prevent parameter estimates from diverging or converging to zero and base their justification in a statistical principle. These methods are used as remedies to convergence failure problems. Gadagkar, S. R. and Call, G. B. (2015) <doi:10.1016/j.vascn.2014.08.006> Ritz, C. and Baty, F. and Streibig, J. C. and Gerhard, D. (2015) <doi:10.1371/journal.pone.0146021>.

r-eatme 0.1.0
Propagated dependencies: r-qcr@1.4
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EATME
Licenses: GPL 3
Synopsis: Exponentially Weighted Moving Average with Adjustments to Measurement Error
Description:

The univariate statistical quality control tool aims to address measurement error effects when constructing exponentially weighted moving average p control charts. The method primarily focuses on binary random variables, but it can be applied to any continuous random variables by using sign statistic to transform them to discrete ones. With the correction of measurement error effects, we can obtain the corrected control limits of exponentially weighted moving average p control chart and reasonably adjusted exponentially weighted moving average p control charts. The methods in this package can be found in some relevant references, such as Chen and Yang (2022) <arXiv: 2203.03384>; Yang et al. (2011) <doi: 10.1016/j.eswa.2010.11.044>; Yang and Arnold (2014) <doi: 10.1155/2014/238719>; Yang (2016) <doi: 10.1080/03610918.2013.763980> and Yang and Arnold (2016) <doi: 10.1080/00949655.2015.1125901>.

r-gtwas 1.1.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gtWAS
Licenses: GPL 2+
Synopsis: Genome and Transcriptome Wide Association Study
Description:

Quantitative trait loci mapping and genome wide association analysis are used to find candidate molecular marker or region associated with phenotype based on linkage analysis and linkage disequilibrium. Gene expression quantitative trait loci mapping is used to find candidate molecular marker or region associated with gene expression. In this package, we applied the method in Liu W. (2011) <doi:10.1007/s00122-011-1631-7> and Gusev A. (2016) <doi:10.1038/ng.3506> to genome and transcriptome wide association study, which is aimed at revealing the association relationship between phenotype and molecular markers, expression levels, molecular markers nested within different related expression effect and expression effect nested within different related molecular marker effect. F test based on full and reduced model are performed to obtain p value or likelihood ratio statistic. The best linear model can be obtained by stepwise regression analysis.

r-hdrfa 0.1.5
Propagated dependencies: r-quantreg@6.1 r-pracma@2.4.4
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HDRFA
Licenses: GPL 2 GPL 3
Synopsis: High-Dimensional Robust Factor Analysis
Description:

Factor models have been widely applied in areas such as economics and finance, and the well-known heavy-tailedness of macroeconomic/financial data should be taken into account when conducting factor analysis. We propose two algorithms to do robust factor analysis by considering the Huber loss. One is based on minimizing the Huber loss of the idiosyncratic error's L2 norm, which turns out to do Principal Component Analysis (PCA) on the weighted sample covariance matrix and thereby named as Huber PCA. The other one is based on minimizing the element-wise Huber loss, which can be solved by an iterative Huber regression algorithm. In this package we also provide the code for traditional PCA, the Robust Two Step (RTS) method by He et al. (2022) and the Quantile Factor Analysis (QFA) method by Chen et al. (2021) and He et al. (2023).

r-lphom 0.3.5-6
Propagated dependencies: r-lpsolve@5.6.23
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://cran.r-project.org/package=lphom
Licenses: FSDG-compatible FSDG-compatible
Synopsis: Ecological Inference by Linear Programming under Homogeneity
Description:

This package provides a bunch of algorithms based on linear programming for estimating, under the homogeneity hypothesis, RxC ecological contingency tables (or vote transition matrices) using mainly aggregate data (from voting units). References: Pavà a and Romero (2024) <doi:10.1177/00491241221092725>. Pavà a and Romero (2024) <doi:10.1093/jrsssa/qnae013>. Pavà a (2023) <doi:10.1007/s43545-023-00658-y>. Pavà a (2024) <doi:10.1080/0022250X.2024.2423943>. Pavà a (2024) <doi:10.1177/07591063241277064>. Pavà a and Penadés (2024). A bottom-up approach for ecological inference. Romero, Pavà a, Martà n and Romero (2020) <doi:10.1080/02664763.2020.1804842>. Acknowledgements: The authors wish to thank Consellerà a de Educación, Universidades y Empleo, Generalitat Valenciana (grants AICO/2021/257, CIAICO/2023/031) and Ministerio de Economà a e Innovación (grant PID2021-128228NB-I00) for supporting this research.

r-sirus 0.3.3
Propagated dependencies: r-rocr@1.0-11 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-matrix@1.7-3 r-glmnet@4.1-8 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://gitlab.com/drti/sirus
Licenses: GPL 3
Synopsis: Stable and Interpretable RUle Set
Description:

This package provides a regression and classification algorithm based on random forests, which takes the form of a short list of rules. SIRUS combines the simplicity of decision trees with a predictivity close to random forests. The core aggregation principle of random forests is kept, but instead of aggregating predictions, SIRUS aggregates the forest structure: the most frequent nodes of the forest are selected to form a stable rule ensemble model. The algorithm is fully described in the following articles: Benard C., Biau G., da Veiga S., Scornet E. (2021), Electron. J. Statist., 15:427-505 <DOI:10.1214/20-EJS1792> for classification, and Benard C., Biau G., da Veiga S., Scornet E. (2021), AISTATS, PMLR 130:937-945 <http://proceedings.mlr.press/v130/benard21a>, for regression. This R package is a fork from the project ranger (<https://github.com/imbs-hl/ranger>).

r-gjls2 0.2.0
Propagated dependencies: r-quantreg@6.1 r-plyr@1.8.9 r-nlme@3.1-168 r-moments@0.14.1 r-mcmcpack@1.7-1 r-mass@7.3-65 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gJLS2
Licenses: GPL 3+
Synopsis: Generalized Joint Location and Scale Framework for Association Testing
Description:

An update to the Joint Location-Scale (JLS) testing framework that identifies associated SNPs, gene-sets and pathways with main and/or interaction effects on quantitative traits (Soave et al., 2015; <doi:10.1016/j.ajhg.2015.05.015>). The JLS method simultaneously tests the null hypothesis of equal mean and equal variance across genotypes, by aggregating association evidence from the individual location/mean-only and scale/variance-only tests using Fisher's method. The generalized joint location-scale (gJLS) framework has been developed to deal specifically with sample correlation and group uncertainty (Soave and Sun, 2017; <doi:10.1111/biom.12651>). The current release: gJLS2, include additional functionalities that enable analyses of X-chromosome genotype data through novel methods for location (Chen et al., 2021; <doi:10.1002/gepi.22422>) and scale (Deng et al., 2019; <doi:10.1002/gepi.22247>).

r-slimr 1.0.3
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-seurat@5.3.0 r-scales@1.4.0 r-readxl@1.4.5 r-pheatmap@1.0.12 r-patchwork@1.3.0 r-magrittr@2.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-cowplot@1.1.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SlimR
Licenses: GPL 3
Synopsis: Marker-Based Package for Single-Cell and Spatial-Transcriptomic Annotation
Description:

Annotating single-cell and spatial-transcriptomic (ST) data based on the Marker dataset. It supports the creation of a unified marker list, Markers_list, using sources including: the package's built-in curated species-specific cell type and marker reference databases (e.g., Cellmarker2', PanglaoDB'), Seurat objects containing cell label information, or user-provided Excel tables mapping cell types to markers. Based on the Markers_list, SlimR can iterate through different cell types to generate corresponding annotation reference plots (e.g., Markers_Dotplot', Metric_Heatmap', Mean_expression_Box_plot'). Furthermore, it enables one-click generation of an annotation heatmap ('Annotation_Heatmap') visualizing the relationship between input cell types and the reference marker list. For more details see Kabacoff (2015, ISBN:9781617291388) and Hu et al. (2023) <doi:10.1093/nar/gkac947> and Franzén et al. (2019) <doi:10.1093/database/baz046>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
Total results: 34014