This package provides the output of running Salmon on a set of 12 RNA-seq samples from King & Klose, "The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells", published in eLIFE, March 2017. For details on version numbers and how the samples were processed see the package vignette.
Subtyping via Consensus Factor Analysis (SCFA) can efficiently remove noisy signals from consistent molecular patterns in multi-omics data. SCFA first uses an autoencoder to select only important features and then repeatedly performs factor analysis to represent the data with different numbers of factors. Using these representations, it can reliably identify cancer subtypes and accurately predict risk scores of patients.
The Recode library converts files between character sets and usages. It recognises or produces over 200 different character sets (or about 300 if combined with an iconv library) and transliterates files between almost any pair. When exact transliteration are not possible, it gets rid of offending characters or falls back on approximations. The recode program is a handy front-end to the library.
Target capture experiments combine hybridization-based (in solution or on microarrays) capture and enrichment of genomic regions of interest (e.g. the exome) with high throughput sequencing of the captured DNA fragments. This package provides functionalities for assessing and visualizing the quality of the target enrichment process, like specificity and sensitivity of the capture, per-target read coverage and so on.
The package provides S4 classes and methods to filter, summarise and visualise genetic variation data stored in VCF files. In particular, the package extends the FilterRules class (S4Vectors package) to define news classes of filter rules applicable to the various slots of VCF objects. Functionalities are integrated and demonstrated in a Shiny web-application, the Shiny Variant Explorer (tSVE).
This package provides a simple git client for R based on libgit2 with support for SSH and HTTPS remotes. All functions in gert use basic R data types (such as vectors and data-frames) for their arguments and return values. User credentials are shared with command line git through the git-credential store and SSH keys stored on disk or ssh-agent.
redsea is a lightweight command-line FM Radio Data System (FM-RDS) decoder. Redsea can be used with any RTL-SDR USB radio stick with the rtl_fm tool, or any other software-defined radio (SDR) via csdr, for example. It can also decode raw ASCII bitstream, the hex format used by RDS Spy, and audio files containing multiplex signals (MPX).
This is a package for Non-Negative Linear Models (NNLM). It implements fast sequential coordinate descent algorithms for non-negative linear regression and non-negative matrix factorization (NMF). It supports mean square error and Kullback-Leibler divergence loss. Many other features are also implemented, including missing value imputation, domain knowledge integration, designable W and H matrices and multiple forms of regularizations.
This package helps you with creation and use of R repositories via helper functions to insert packages into a repository, and to add repository information to the current R session. Two primary types of repositories are supported: gh-pages at GitHub, as well as local repositories on either the same machine or a local network. Drat is a recursive acronym: Drat R Archive Template.
This package provides a set of functions for sparse matrix algebra. Differences with other sparse matrix packages are:
it only supports (essentially) one sparse matrix format;
it is based on transparent and simple structure(s);
it is tailored for MCMC calculations within G(M)RF;
and it is fast and scalable (with the extension package
spam64).
This package provides coroutines for R, a family of functions that can be suspended and resumed later on. This includes async functions (which await) and generators (which yield). Async functions are based on the concurrency framework of the promises package. Generators are based on a dependency free iteration protocol defined in coro and are compatible with iterators from the reticulate package.
This package provides tooling to group dates by a variety of periods including: yearly, monthly, by second, by week of the month, and more. The groups are defined in such a way that they also represent the distance between dates in terms of the period. This extracts valuable information that can be used in further calculations that rely on a specific temporal spacing between observations.
Cluster ensembles are collections of individual solutions to a given clustering problem which are useful or necessary to consider in a wide range of applications. This R package provides an extensible computational environment for creating and analyzing cluster ensembles, with basic data structures for representing partitions and hierarchies, and facilities for computing on them, including methods for measuring proximity and obtaining consensus and secondary clusterings.
Least Angle Regression ("LAR") is a model selection algorithm; a useful and less greedy version of traditional forward selection methods. A simple modification of the LAR algorithm implements Tibshirani's Lasso; the Lasso modification of LARS calculates the entire Lasso path of coefficients for a given problem at the cost of a single least squares fit. Another LARS modification efficiently implements epsilon Forward Stagewise linear regression.
The curl() and curl_download() functions provide highly configurable drop-in replacements for base url() and download.file() with better performance, support for encryption, gzip compression, authentication, and other libcurl goodies. The core of the package implements a framework for performing fully customized requests where data can be processed either in memory, on disk, or streaming via the callback or connection interfaces.
Logging functions in RcppSpdlog provide access to the logging functionality from the spdlog C++ library. This package offers shorter convenience wrappers for the R functions which match the C++ functions, namely via, say, spdl::debug() at the debug level. The actual formatting is done by the fmt::format() function from the fmtlib library (that is also std::format() in C++20 or later).
qsea (quantitative sequencing enrichment analysis) was developed as the successor of the MEDIPS package for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-seq). However, qsea provides several functionalities for the analysis of other kinds of quantitative sequencing data (e.g. ChIP-seq, MBD-seq, CMS-seq and others) including calculation of differential enrichment between groups of samples.
Plyr is a set of tools that solves a common set of problems: you need to break a big problem down into manageable pieces, operate on each piece and then put all the pieces back together. For example, you might want to fit a model to each spatial location or time point in your study, summarise data by panels or collapse high-dimensional arrays to simpler summary statistics.
This package lets you analyze response times and accuracies from psychological experiments with the linear ballistic accumulator (LBA) model from Brown and Heathcote (2008). The LBA model is optionally fitted with explanatory variables on the parameters such as the drift rate, the boundary and the starting point parameters. A log-link function on the linear predictors can be used to ensure that parameters remain positive when needed.
Rapidly create a GUI for a function you created by automatically creating widgets for arguments of the function. This package automatically parses help routines for context-sensitive help to these arguments. The interface is essentially a wrapper to some Tcl/Tk routines to both simplify and facilitate GUI creation. More advanced Tcl/Tk routines/GUI objects can be incorporated into the interface for greater customization for the more experienced.
The Ziggurat pseudo-random number generator (or PRNG) offers a lightweight and very fast PRNG for the normal, exponential, and uniform distributions. It is provided here in a small zero-dependency package. It can be used from R as well as from C/C++ code in other packages as is demonstrated by four included sample packages using four distinct methods to use the PRNG presented here in client package.
Similarity Weighted Nonnegative Embedding (SWNE) is a method for visualizing high dimensional datasets. SWNE uses Nonnegative Matrix Factorization to decompose datasets into latent factors, projects those factors onto 2 dimensions, and embeds samples and key features in 2 dimensions relative to the factors. SWNE can capture both the local and global dataset structure, and allows relevant features to be embedded directly onto the visualization, facilitating interpretation of the data.
Our approach provides a way to assign continuous cell cycle phase using scRNA-seq data, and consequently, allows to identify cyclic trend of gene expression levels along the cell cycle. This package provides method and training data, which includes scRNA-seq data collected from 6 individual cell lines of induced pluripotent stem cells (iPSCs), and also continuous cell cycle phase derived from FUCCI fluorescence imaging data.
The Predictive Model Markup Language (PMML) is an XML-based language which provides a way for applications to define machine learning, statistical and data mining models and to share models between PMML compliant applications. More information about the PMML industry standard and the Data Mining Group can be found at http://dmg.org/. The generated PMML can be imported into any PMML consuming application, such as Zementis Predictive Analytics products.