_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-easy-glmnet 1.0
Propagated dependencies: r-survival@3.7-0 r-glmnet@4.1-8 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=easy.glmnet
Licenses: GPL 3
Synopsis: Functions to Simplify the Use of 'glmnet' for Machine Learning
Description:

This package provides several functions to simplify using the glmnet package: converting data frames into matrices ready for glmnet'; b) imputing missing variables multiple times; c) fitting and applying prediction models straightforwardly; d) assigning observations to folds in a balanced way; e) cross-validate the models; f) selecting the most representative model across imputations and folds; and g) getting the relevance of the model regressors; as described in several publications: Solanes et al. (2022) <doi:10.1038/s41537-022-00309-w>, Palau et al. (2023) <doi:10.1016/j.rpsm.2023.01.001>, Sobregrau et al. (2024) <doi:10.1016/j.jpsychores.2024.111656>.

r-glmsimulator 1.0.0
Propagated dependencies: r-tweedie@2.3.5 r-stringr@1.5.1 r-statmod@1.5.0 r-mass@7.3-61 r-magrittr@2.0.3 r-ggplot2@3.5.1 r-dplyr@1.1.4 r-cplm@0.7-12.1 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GlmSimulatoR
Licenses: GPL 3
Synopsis: Creates Ideal Data for Generalized Linear Models
Description:

This package creates ideal data for all distributions in the generalized linear model framework.

r-glmmadaptive 0.9-7
Propagated dependencies: r-nlme@3.1-166 r-matrixstats@1.4.1 r-mass@7.3-61
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://drizopoulos.github.io/GLMMadaptive/
Licenses: GPL 3+
Synopsis: Generalized Linear Mixed Models using Adaptive Gaussian Quadrature
Description:

Fits generalized linear mixed models for a single grouping factor under maximum likelihood approximating the integrals over the random effects with an adaptive Gaussian quadrature rule; Jose C. Pinheiro and Douglas M. Bates (1995) <doi:10.1080/10618600.1995.10474663>.

r-glmsparsenet 1.24.0
Propagated dependencies: r-tcgautils@1.26.0 r-survminer@0.5.0 r-summarizedexperiment@1.36.0 r-rlang@1.1.4 r-readr@2.1.5 r-multiassayexperiment@1.32.0 r-matrix@1.7-1 r-lifecycle@1.0.4 r-httr@1.4.7 r-glue@1.8.0 r-glmnet@4.1-8 r-ggplot2@3.5.1 r-futile-logger@1.4.3 r-forcats@1.0.0 r-dplyr@1.1.4 r-checkmate@2.3.2 r-biomart@2.62.0
Channel: guix-bioc
Location: guix-bioc/packages/g.scm (guix-bioc packages g)
Home page: https://www.github.com/sysbiomed/glmSparseNet
Licenses: GPL 3
Synopsis: Network Centrality Metrics for Elastic-Net Regularized Models
Description:

glmSparseNet is an R-package that generalizes sparse regression models when the features (e.g. genes) have a graph structure (e.g. protein-protein interactions), by including network-based regularizers. glmSparseNet uses the glmnet R-package, by including centrality measures of the network as penalty weights in the regularization. The current version implements regularization based on node degree, i.e. the strength and/or number of its associated edges, either by promoting hubs in the solution or orphan genes in the solution. All the glmnet distribution families are supported, namely "gaussian", "poisson", "binomial", "multinomial", "cox", and "mgaussian".

r-poisson-glm-mix 1.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=poisson.glm.mix
Licenses: GPL 2
Synopsis: Fit High Dimensional Mixtures of Poisson GLMs
Description:

Mixtures of Poisson Generalized Linear Models for high dimensional count data clustering. The (multivariate) responses can be partitioned into set of blocks. Three different parameterizations of the linear predictor are considered. The models are estimated according to the EM algorithm with an efficient initialization scheme <doi:10.1016/j.csda.2014.07.005>.

Page: 123
Total results: 53