_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-metafolio 0.1.2
Propagated dependencies: r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-plyr@1.8.9 r-mass@7.3-65 r-colorspace@2.1-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/seananderson/metafolio
Licenses: GPL 2
Synopsis: Metapopulation Simulations for Conserving Salmon Through Portfolio Optimization
Description:

This package provides a tool to simulate salmon metapopulations and apply financial portfolio optimization concepts. The package accompanies the paper Anderson et al. (2015) <doi:10.1101/2022.03.24.485545>.

r-metalyzer 1.1.0
Propagated dependencies: r-viridislite@0.4.2 r-viridis@0.6.5 r-tidyr@1.3.1 r-tibble@3.2.1 r-summarizedexperiment@1.38.1 r-stringr@1.5.1 r-s4vectors@0.46.0 r-rlang@1.1.6 r-plotly@4.10.4 r-openxlsx@4.2.8 r-limma@3.64.1 r-ggrepel@0.9.6 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-data-table@1.17.4 r-agricolae@1.3-7
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/nilsmechtel/MetAlyzer
Licenses: GPL 3
Synopsis: Read and Analyze 'MetIDQ&trade;' Software Output Files
Description:

The MetAlyzer S4 object provides methods to read and reformat metabolomics data for convenient data handling, statistics and downstream analysis. The resulting format corresponds to input data of the Shiny app MetaboExtract (<https://www.metaboextract.shiny.dkfz.de/MetaboExtract/>).

r-metabolic 0.1.2
Propagated dependencies: r-usethis@3.1.0 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-scales@1.4.0 r-rmarkdown@2.29 r-purrr@1.0.4 r-patchwork@1.3.0 r-meta@8.1-0 r-magrittr@2.0.3 r-glue@1.8.0 r-ggplot2@3.5.2 r-ggimage@0.3.3 r-ggfittext@0.10.2 r-forcats@1.0.0 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/fmmattioni/metabolic
Licenses: CC0
Synopsis: Datasets and Functions for Reproducing Meta-Analyses
Description:

Dataset and functions from the meta-analysis published in Medicine & Science in Sports & Exercise. It contains all the data and functions to reproduce the analysis. "Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: A Meta-analysis". Felipe Mattioni Maturana, Peter Martus, Stephan Zipfel, Andreas M Nieƃ (2020) <doi:10.1249/MSS.0000000000002506>.

r-metapower 0.2.2
Propagated dependencies: r-tidyr@1.3.1 r-testthat@3.2.3 r-rlang@1.1.6 r-magrittr@2.0.3 r-knitr@1.50 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-cowplot@1.1.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metapower
Licenses: GPL 2
Synopsis: Power Analysis for Meta-Analysis
Description:

This package provides a simple and effective tool for computing and visualizing statistical power for meta-analysis, including power analysis of main effects (Jackson & Turner, 2017)<doi:10.1002/jrsm.1240>, test of homogeneity (Pigott, 2012)<doi:10.1007/978-1-4614-2278-5>, subgroup analysis, and categorical moderator analysis (Hedges & Pigott, 2004)<doi:10.1037/1082-989X.9.4.426>.

r-metaquant 0.1.1
Propagated dependencies: r-sld@1.0.1 r-plotly@4.10.4 r-magrittr@2.0.3 r-gld@2.6.7 r-ggplot2@3.5.2 r-estmeansd@1.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaquant
Licenses: GPL 3
Synopsis: Estimating Means, Standard Deviations and Visualising Distributions using Quantiles
Description:

This package implements a novel density-based approach for estimating unknown means, visualizing distributions, and meta-analyses of quantiles. A detailed vignettes with example datasets and code to prepare data and analyses is available at <https://bookdown.org/a2delivera/metaquant/>. The methods are described in the pre-print by De Livera, Prendergast and Kumaranathunga (2024, <doi:10.48550/arXiv.2411.10971>).

r-meta4diag 2.1.1
Propagated dependencies: r-sp@2.2-0 r-shinybs@0.61.1 r-shiny@1.10.0 r-catools@1.18.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=meta4diag
Licenses: GPL 2+ GPL 3+
Synopsis: Meta-Analysis for Diagnostic Test Studies
Description:

Bayesian inference analysis for bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximation with INLA. A purpose built graphic user interface is available. The installation of R package INLA is compulsory for successful usage. The INLA package can be obtained from <https://www.r-inla.org>. We recommend the testing version, which can be downloaded by running: install.packages("INLA", repos=c(getOption("repos"), INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE).

r-metacycle 1.2.0
Propagated dependencies: r-gnm@1.1-5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MetaCycle
Licenses: GPL 2+
Synopsis: Evaluate Periodicity in Large Scale Data
Description:

There are two functions-meta2d and meta3d for detecting rhythmic signals from time-series datasets. For analyzing time-series datasets without individual information, meta2d is suggested, which could incorporates multiple methods from ARSER, JTK_CYCLE and Lomb-Scargle in the detection of interested rhythms. For analyzing time-series datasets with individual information, meta3d is suggested, which takes use of any one of these three methods to analyze time-series data individual by individual and gives out integrated values based on analysis result of each individual.

r-metaprotr 1.2.2
Propagated dependencies: r-tidyverse@2.0.0 r-stringr@1.5.1 r-reshape2@1.4.4 r-ggrepel@0.9.6 r-ggforce@0.4.2 r-dplyr@1.1.4 r-dendextend@1.19.0 r-ade4@1.7-23
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://forgemia.inra.fr/pappso/metaprotr
Licenses: GPL 3
Synopsis: Metaproteomics Post-Processing Analysis
Description:

Set of tools for descriptive analysis of metaproteomics data generated from high-throughput mass spectrometry instruments. These tools allow to cluster peptides and proteins abundance, expressed as spectral counts, and to manipulate them in groups of metaproteins. This information can be represented using multiple visualization functions to portray the global metaproteome landscape and to differentiate samples or conditions, in terms of abundance of metaproteins, taxonomic levels and/or functional annotation. The provided tools allow to implement flexible analytical pipelines that can be easily applied to studies interested in metaproteomics analysis.

r-metacoder 0.3.8
Propagated dependencies: r-vegan@2.6-10 r-tibble@3.2.1 r-taxize@0.10.0 r-stringr@1.5.1 r-seqinr@4.2-36 r-rlang@1.1.6 r-readr@2.1.5 r-rcurl@1.98-1.17 r-rcpp@1.0.14 r-r6@2.6.1 r-magrittr@2.0.3 r-lazyeval@0.2.2 r-igraph@2.1.4 r-ggplot2@3.5.2 r-ggfittext@0.10.2 r-ga@3.2.4 r-dplyr@1.1.4 r-crayon@1.5.3 r-cowplot@1.1.3 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://grunwaldlab.github.io/metacoder_documentation/
Licenses: GPL 2 GPL 3
Synopsis: Tools for Parsing, Manipulating, and Graphing Taxonomic Abundance Data
Description:

Reads, plots, and manipulates large taxonomic data sets, like those generated from modern high-throughput sequencing, such as metabarcoding (i.e. amplification metagenomics, 16S metagenomics, etc). It provides a tree-based visualization called "heat trees" used to depict statistics for every taxon in a taxonomy using color and size. It also provides various functions to do common tasks in microbiome bioinformatics on data in the taxmap format defined by the taxa package. The metacoder package is described in the publication by Foster et al. (2017) <doi:10.1371/journal.pcbi.1005404>.

r-metarange 1.1.4
Propagated dependencies: r-terra@1.8-50 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-r6@2.6.1 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://metaRange.github.io/metaRange/
Licenses: GPL 3
Synopsis: Framework to Build Mechanistic and Metabolic Constrained Species Distribution Models
Description:

Build spatially and temporally explicit process-based species distribution models, that can include an arbitrary number of environmental factors, species and processes including metabolic constraints and species interactions. The focus of the package is simulating populations of one or multiple species in a grid-based landscape and studying the meta-population dynamics and emergent patterns that arise from the interaction of species under complex environmental conditions. It provides functions for common ecological processes such as negative exponential, kernel-based dispersal (see Nathan et al. (2012) <doi:10.1093/acprof:oso/9780199608898.003.0015>), calculation of the environmental suitability based on cardinal values ( Yin et al. (1995) <doi:10.1016/0168-1923(95)02236-Q>, simplified by Yan and Hunt (1999) <doi:10.1006/anbo.1999.0955> see eq: 4), reproduction in form of an Ricker model (see Ricker (1954) <doi:10.1139/f54-039> and Cabral and Schurr (2010) <doi:10.1111/j.1466-8238.2009.00492.x>), as well as metabolic scaling based on the metabolic theory of ecology (see Brown et al. (2004) <doi:10.1890/03-9000> and Brown, Sibly and Kodric-Brown (2012) <doi:10.1002/9781119968535.ch>).

r-metarnaseq 1.0.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaRNASeq
Licenses: GPL 2+ GPL 3+
Synopsis: Meta-Analysis of RNA-Seq Data
Description:

Implementation of two p-value combination techniques (inverse normal and Fisher methods). A vignette is provided to explain how to perform a meta-analysis from two independent RNA-seq experiments.

r-metasdtreg 0.2.2
Propagated dependencies: r-truncnorm@1.0-9 r-ordinal@2023.12-4.1 r-maxlik@1.5-2.1 r-matrix@1.7-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaSDTreg
Licenses: GPL 3
Synopsis: Regression Models for Meta Signal Detection Theory
Description:

Regression methods for the meta-SDT model. The package implements methods for cognitive experiments of metacognition as described in Kristensen, S. B., Sandberg, K., & Bibby, B. M. (2020). Regression methods for metacognitive sensitivity. Journal of Mathematical Psychology, 94. <doi:10.1016/j.jmp.2019.102297>.

r-metabodata 0.6.3
Propagated dependencies: r-yaml@2.3.10 r-tibble@3.2.1 r-stringr@1.5.1 r-rlang@1.1.6 r-readr@2.1.5 r-purrr@1.0.4 r-piggyback@0.1.5 r-magrittr@2.0.3 r-fs@1.6.6 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://aberhrml.github.io/metaboData/
Licenses: GPL 3+
Synopsis: Example Metabolomics Data Sets
Description:

Data sets from a variety of biological sample matrices, analysed using a number of mass spectrometry based metabolomic analytical techniques. The example data sets are stored remotely using GitHub releases <https://github.com/aberHRML/metaboData/releases> which can be accessed from R using the package. The package also includes the abr1 FIE-MS data set from the FIEmspro package <https://users.aber.ac.uk/jhd/> <doi:10.1038/nprot.2007.511>.

r-metaforest 0.1.4
Propagated dependencies: r-ranger@0.17.0 r-metafor@4.8-0 r-gtable@0.3.6 r-ggplot2@3.5.2 r-data-table@1.17.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaforest
Licenses: GPL 3
Synopsis: Exploring Heterogeneity in Meta-Analysis using Random Forests
Description:

Conduct random forests-based meta-analysis, obtain partial dependence plots for metaforest and classic meta-analyses, and cross-validate and tune metaforest- and classic meta-analyses in conjunction with the caret package. A requirement of classic meta-analysis is that the studies being aggregated are conceptually similar, and ideally, close replications. However, in many fields, there is substantial heterogeneity between studies on the same topic. Classic meta-analysis lacks the power to assess more than a handful of univariate moderators. MetaForest, by contrast, has substantial power to explore heterogeneity in meta-analysis. It can identify important moderators from a larger set of potential candidates (Van Lissa, 2020). This is an appealing quality, because many meta-analyses have small sample sizes. Moreover, MetaForest yields a measure of variable importance which can be used to identify important moderators, and offers partial prediction plots to explore the shape of the marginal relationship between moderators and effect size.

r-metamedian 1.2.1
Propagated dependencies: r-metafor@4.8-0 r-metablue@1.0.0 r-hmisc@5.2-3 r-estmeansd@1.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/stmcg/metamedian
Licenses: GPL 3+
Synopsis: Meta-Analysis of Medians
Description:

This package implements several methods to meta-analyze studies that report the sample median of the outcome. The methods described by McGrath et al. (2019) <doi:10.1002/sim.8013>, Ozturk and Balakrishnan (2020) <doi:10.1002/sim.8738>, and McGrath et al. (2020a) <doi:10.1002/bimj.201900036> can be applied to directly meta-analyze the median or difference of medians between groups. Additionally, a number of methods (e.g., McGrath et al. (2020b) <doi:10.1177/0962280219889080>, Cai et al. (2021) <doi:10.1177/09622802211047348>, and McGrath et al. (2023) <doi:10.1177/09622802221139233>) are implemented to estimate study-specific (difference of) means and their standard errors in order to estimate the pooled (difference of) means. Methods for meta-analyzing median survival times (McGrath et al. (2025) <doi:10.48550/arXiv.2503.03065>) are also implemented. See McGrath et al. (2024) <doi:10.1002/jrsm.1686> for a detailed guide on using the package.

r-metahelper 1.0.0
Propagated dependencies: r-magrittr@2.0.3 r-confintr@1.0.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/RobertEmprechtinger/metaHelper
Licenses: Expat
Synopsis: Transforms Statistical Measures Commonly Used for Meta-Analysis
Description:

Helps calculate statistical values commonly used in meta-analysis. It provides several methods to compute different forms of standardized mean differences, as well as other values such as standard errors and standard deviations. The methods used in this package are described in the following references: Altman D G, Bland J M. (2011) <doi:10.1136/bmj.d2090> Borenstein, M., Hedges, L.V., Higgins, J.P.T. and Rothstein, H.R. (2009) <doi:10.1002/9780470743386.ch4> Chinn S. (2000) <doi:10.1002/1097-0258(20001130)19:22%3C3127::aid-sim784%3E3.0.co;2-m> Cochrane Handbook (2011) <https://handbook-5-1.cochrane.org/front_page.htm> Cooper, H., Hedges, L. V., & Valentine, J. C. (2009) <https://psycnet.apa.org/record/2009-05060-000> Cohen, J. (1977) <https://psycnet.apa.org/record/1987-98267-000> Ellis, P.D. (2009) <https://www.psychometrica.de/effect_size.html> Goulet-Pelletier, J.-C., & Cousineau, D. (2018) <doi:10.20982/tqmp.14.4.p242> Hedges, L. V. (1981) <doi:10.2307/1164588> Hedges L. V., Olkin I. (1985) <doi:10.1016/C2009-0-03396-0> Murad M H, Wang Z, Zhu Y, Saadi S, Chu H, Lin L et al. (2023) <doi:10.1136/bmj-2022-073141> Mayer M (2023) <https://search.r-project.org/CRAN/refmans/confintr/html/ci_proportion.html> Stackoverflow (2014) <https://stats.stackexchange.com/questions/82720/confidence-interval-around-binomial-estimate-of-0-or-1> Stackoverflow (2018) <https://stats.stackexchange.com/q/338043>.

r-metacluster 0.1.1
Propagated dependencies: r-seqinr@4.2-36 r-factoextra@1.0.7 r-dplyr@1.1.4 r-dbscan@1.2.2 r-cluster@2.1.8.1 r-biostrings@2.76.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaCluster
Licenses: GPL 3
Synopsis: Metagenomic Clustering
Description:

Clustering in metagenomics is the process of grouping of microbial contigs in species specific bins. This package contains functions that extract genomic features from metagenome data, find the number of clusters for that given data and find the best clustering algorithm for binning.

r-metalite-ae 0.1.3
Propagated dependencies: r-r2rtf@1.1.4 r-metalite@0.1.4 r-glue@1.8.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://merck.github.io/metalite.ae/
Licenses: GPL 3
Synopsis: Adverse Events Analysis Using 'metalite'
Description:

Analyzes adverse events in clinical trials using the metalite data structure. The package simplifies the workflow to create production-ready tables, listings, and figures discussed in the adverse events analysis chapters of "R for Clinical Study Reports and Submission" by Zhang et al. (2022) <https://r4csr.org/>.

r-metalite-sl 0.1.1
Propagated dependencies: r-uuid@1.2-1 r-stringr@1.5.1 r-rlang@1.1.6 r-reactable@0.4.4 r-r2rtf@1.1.4 r-plotly@4.10.4 r-metalite-ae@0.1.3 r-metalite@0.1.4 r-htmltools@0.5.8.1 r-glue@1.8.0 r-brew@1.0-10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metalite.sl
Licenses: GPL 3+
Synopsis: Subject-Level Analysis Using 'metalite'
Description:

Analyzes subject-level data in clinical trials using the metalite data structure. The package simplifies the workflow to create production-ready tables, listings, and figures discussed in the subject-level analysis chapters of "R for Clinical Study Reports and Submission" by Zhang et al. (2022) <https://r4csr.org/>.

r-metabolssmf 0.1.0
Propagated dependencies: r-tidyr@1.3.1 r-nmf@0.28 r-mclust@6.1.1 r-lsei@1.3-0 r-laplacesdemon@16.1.6 r-iterators@1.0.14 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MetabolSSMF
Licenses: Expat
Synopsis: Simplex-Structured Matrix Factorisation for Metabolomics Analysis
Description:

This package provides a framework to perform soft clustering using simplex-structured matrix factorisation (SSMF). The package contains a set of functions for determining the optimal number of prototypes, the optimal algorithmic parameters, the estimation confidence intervals and the diversity of clusters. Abdolali, Maryam & Gillis, Nicolas (2020) <doi:10.1137/20M1354982>.

r-metanetwork 0.7.0
Propagated dependencies: r-visnetwork@2.1.2 r-sna@2.8 r-rlang@1.1.6 r-rcolorbrewer@1.1-3 r-network@1.19.0 r-matrix@1.7-3 r-magrittr@2.0.3 r-intergraph@2.0-4 r-igraph@2.1.4 r-ggplot2@3.5.2 r-ggimage@0.3.3 r-ggally@2.2.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/MarcOhlmann/metanetwork
Licenses: GPL 3
Synopsis: Handling and Representing Trophic Networks in Space and Time
Description:

This package provides a toolbox to handle and represent trophic networks in space or time across aggregation levels. This package contains a layout algorithm specifically designed for trophic networks, using dimension reduction on a diffusion graph kernel and trophic levels. Importantly, this package provides a layout method applicable for large trophic networks.

r-metaconvert 1.0.3
Propagated dependencies: r-rio@1.2.3 r-mvtnorm@1.3-3 r-metafor@4.8-0 r-estimraw@1.0.0 r-comparedf@2.3.5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaConvert
Licenses: GPL 3+
Synopsis: An Automatic Suite for Estimation of Various Effect Size Measures
Description:

Automatically estimate 11 effect size measures from a well-formatted dataset. Various other functions can help, for example, removing dependency between several effect sizes, or identifying differences between two datasets. This package is mainly designed to assist in conducting a systematic review with a meta-analysis but can be useful to any researcher interested in estimating an effect size.

r-metautility 2.1.2
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.5.1 r-rlang@1.1.6 r-purrr@1.0.4 r-metafor@4.8-0 r-metadat@1.4-0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MetaUtility
Licenses: GPL 2
Synopsis: Utility Functions for Conducting and Interpreting Meta-Analyses
Description:

This package contains functions to estimate the proportion of effects stronger than a threshold of scientific importance (function prop_stronger), to nonparametrically characterize the distribution of effects in a meta-analysis (calib_ests, pct_pval), to make effect size conversions (r_to_d, r_to_z, z_to_r, d_to_logRR), to compute and format inference in a meta-analysis (format_CI, format_stat, tau_CI), to scrape results from existing meta-analyses for re-analysis (scrape_meta, parse_CI_string, ci_to_var).

r-metalandsim 2.0.0
Propagated dependencies: r-zipfr@0.6-70 r-terra@1.8-50 r-spatstat-random@3.4-1 r-spatstat-geom@3.4-1 r-sp@2.2-0 r-minpack-lm@1.2-4 r-knitr@1.50 r-igraph@2.1.4 r-googlevis@0.7.3 r-e1071@1.7-16 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MetaLandSim
Licenses: GPL 2+
Synopsis: Landscape and Range Expansion Simulation
Description:

This package provides tools to generate random landscape graphs, evaluate species occurrence in dynamic landscapes, simulate future landscape occupation and evaluate range expansion when new empty patches are available (e.g. as a result of climate change). References: Mestre, F., Canovas, F., Pita, R., Mira, A., Beja, P. (2016) <doi:10.1016/j.envsoft.2016.03.007>; Mestre, F., Risk, B., Mira, A., Beja, P., Pita, R. (2017) <doi:10.1016/j.ecolmodel.2017.06.013>; Mestre, F., Pita, R., Mira, A., Beja, P. (2020) <doi:10.1186/s12898-019-0273-5>.

Page: 1234
Total results: 95