The constructs used to study the human psychology have many definitions and corresponding instructions for eliciting and coding qualitative data pertaining to constructs content and for measuring the constructs. This plethora of definitions and instructions necessitates unequivocal reference to specific definitions and instructions in empirical and secondary research. This package implements a human- and machine-readable standard for specifying construct definitions and instructions for measurement and qualitative research based on YAML'. This standard facilitates systematic unequivocal reference to specific construct definitions and corresponding instructions in a decentralized manner (i.e. without requiring central curation; Peters (2020) <doi:10.31234/osf.io/xebhn>).
Estimation and inference of spatial and spatio-temporal semiparametric models including spatial or spatio-temporal non-parametric trends, parametric and non-parametric covariates and, possibly, a spatial lag for the dependent variable and temporal correlation in the noise. The spatio-temporal trend can be decomposed in ANOVA way including main and interaction functional terms. Use of SAP algorithm to estimate the spatial or spatio-temporal trend and non-parametric covariates. The methodology of these models can be found in next references Basile, R. et al. (2014), <doi:10.1016/j.jedc.2014.06.011>; Rodriguez-Alvarez, M.X. et al. (2015) <doi:10.1007/s11222-014-9464-2> and, particularly referred to the focus of the package, Minguez, R., Basile, R. and Durban, M. (2020) <doi:10.1007/s10260-019-00492-8>.
Returns almost all features that has been extracted from Position Specific Scoring Matrix (PSSM) so far, which is a matrix of L rows (L is protein length) and 20 columns produced by PSI-BLAST which is a program to produce PSSM Matrix from multiple sequence alignment of proteins see <https://www.ncbi.nlm.nih.gov/books/NBK2590/> for mor details. some of these features are described in Zahiri, J., et al.(2013) <DOI:10.1016/j.ygeno.2013.05.006>, Saini, H., et al.(2016) <DOI:10.17706/jsw.11.8.756-767>, Ding, S., et al.(2014) <DOI:10.1016/j.biochi.2013.09.013>, Cheng, C.W., et al.(2008) <DOI:10.1186/1471-2105-9-S12-S6>, Juan, E.Y., et al.(2009) <DOI:10.1109/CISIS.2009.194>.
This package implements estimation and testing procedures for evaluating an intermediate biomarker response as a principal surrogate of a clinical response to treatment (i.e., principal stratification effect modification analysis), as described in Juraska M, Huang Y, and Gilbert PB (2020), Inference on treatment effect modification by biomarker response in a three-phase sampling design, Biostatistics, 21(3): 545-560 <doi:10.1093/biostatistics/kxy074>. The methods avoid the restrictive placebo structural risk modeling assumption common to past methods and further improve robustness by the use of nonparametric kernel smoothing for biomarker density estimation. A randomized controlled two-group clinical efficacy trial is assumed with an ordered categorical or continuous univariate biomarker response measured at a fixed timepoint post-randomization and with a univariate baseline surrogate measure allowed to be observed in only a subset of trial participants with an observed biomarker response (see the flexible three-phase sampling design in the paper for details). Bootstrap-based procedures are available for pointwise and simultaneous confidence intervals and testing of four relevant hypotheses. Summary and plotting functions are provided for estimation results.
Spearman's rank correlation test with precomputed exact null distribution for n <= 22.
This package provides a beginner-friendly R package for modeling in psychology or related field. It allows fitting models, plotting, checking goodness of fit, and model assumption violations all in one place. It also produces beautiful and easy-to-read output.
Psychometric mixture models based on flexmix infrastructure. At the moment Rasch mixture models with different parameterizations of the score distribution (saturated vs. mean/variance specification), Bradley-Terry mixture models, and MPT mixture models are implemented. These mixture models can be estimated with or without concomitant variables. See Frick et al. (2012) <doi:10.18637/jss.v048.i07> and Frick et al. (2015) <doi:10.1177/0013164414536183> for details on the Rasch mixture models.
Algorithms to implement various Bayesian penalized survival regression models including: semiparametric proportional hazards models with lasso priors (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and three other shrinkage and group priors (Lee et al., Stat Anal Data Min, 2015 <doi:10.1002/sam.11266>); parametric accelerated failure time models with group/ordinary lasso prior (Lee et al. Comput Stat Data Anal, 2017 <doi:10.1016/j.csda.2017.02.014>).
This package provides tools for computing bare-bones and psychometric meta-analyses and for generating psychometric data for use in meta-analysis simulations. Supports bare-bones, individual-correction, and artifact-distribution methods for meta-analyzing correlations and d values. Includes tools for converting effect sizes, computing sporadic artifact corrections, reshaping meta-analytic databases, computing multivariate corrections for range variation, and more. Bugs can be reported to <https://github.com/psychmeta/psychmeta/issues> or <issues@psychmeta.com>.
Bayesian dynamic borrowing is an approach to incorporating external data to supplement a randomized, controlled trial analysis in which external data are incorporated in a dynamic way (e.g., based on similarity of outcomes); see Viele 2013 <doi:10.1002/pst.1589> for an overview. This package implements the hierarchical commensurate prior approach to dynamic borrowing as described in Hobbes 2011 <doi:10.1111/j.1541-0420.2011.01564.x>. There are three main functionalities. First, psborrow2 provides a user-friendly interface for applying dynamic borrowing on the study results handles the Markov Chain Monte Carlo sampling on behalf of the user. Second, psborrow2 provides a simulation framework to compare different borrowing parameters (e.g. full borrowing, no borrowing, dynamic borrowing) and other trial and borrowing characteristics (e.g. sample size, covariates) in a unified way. Third, psborrow2 provides a set of functions to generate data for simulation studies, and also allows the user to specify their own data generation process. This package is designed to use the sampling functions from cmdstanr which can be installed from <https://stan-dev.r-universe.dev>.
Person fit statistics based on Quality Control measures are provided for questionnaires and tests given a specified IRT model. Statistics based on Cumulative Sum (CUSUM) charts are provided. Options are given for banks with polytomous and dichotomous data.
Recursive partitioning based on psychometric models, employing the general MOB algorithm (from package partykit) to obtain Bradley-Terry trees, Rasch trees, rating scale and partial credit trees, and MPT trees, trees for 1PL, 2PL, 3PL and 4PL models and generalized partial credit models.
Implementation of PsychroLib
<https://github.com/psychrometrics/psychrolib> library which contains functions to enable the calculation properties of moist and dry air in both metric (SI) and imperial (IP) systems of units. References: Meyer, D. and Thevenard, D (2019) <doi:10.21105/joss.01137>.
Support functions, data sets, and vignettes for the psych package. Contains several of the biggest data sets for the psych package as well as four vignettes. A few helper functions for file manipulation are included as well. For more information, see the <https://personality-project.org/r/> web page.
Efficient calculation of pseudo-ranks and (pseudo)-rank based test statistics. In case of equal sample sizes, pseudo-ranks and mid-ranks are equal. When used for inference mid-ranks may lead to paradoxical results. Pseudo-ranks are in general not affected by such a problem. See Happ et al. (2020, <doi:10.18637/jss.v095.c01>) for details.
Psupertime is supervised pseudotime for single cell RNAseq data. It uses single cell RNAseq data, where the cells have a known ordering. This ordering helps to identify a small number of genes which place cells in that known order. It can be used for discovery of relevant genes, for identification of subpopulations, and characterization of further unknown or differently labelled data.
This package provides a collection of easy-to-use tools for regression analysis of survival data with a cure fraction proposed in Su et al. (2022) <doi:10.1177/09622802221108579>. The modeling framework is based on the Cox proportional hazards mixture cure model and the bounded cumulative hazard (promotion time cure) model. The pseudo-observations approach is utilized to assess covariate effects and embedded in the variable selection procedure.
Interactive R package with an intuitive Shiny-based graphical interface for alternative splicing quantification and integrative analyses of alternative splicing and gene expression based on The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression project (GTEx), Sequence Read Archive (SRA) and user-provided data. The tool interactively performs survival, dimensionality reduction and median- and variance-based differential splicing and gene expression analyses that benefit from the incorporation of clinical and molecular sample-associated features (such as tumour stage or survival). Interactive visual access to genomic mapping and functional annotation of selected alternative splicing events is also included.
Power and Sample Size for Health Researchers is a Shiny application that brings together a series of functions related to sample size and power calculations for common analysis in the healthcare field. There are functionalities to calculate the power, sample size to estimate or test hypotheses for means and proportions (including test for correlated groups, equivalence, non-inferiority and superiority), association, correlations coefficients, regression coefficients (linear, logistic, gamma, and Cox), linear mixed model, Cronbach's alpha, interobserver agreement, intraclass correlation coefficients, limit of agreement on Bland-Altman plots, area under the curve, sensitivity and specificity incorporating the prevalence of disease. You can also use the online version at <https://hcpa-unidade-bioestatistica.shinyapps.io/PSS_Health/>.
Data and examples from meta-analyses in psychology research.
Helper functions for producing reports in Psychology (Reproducible Research). Provides required formatted strings (APA style) for use in Knitr'/'Latex integration within *.Rnw files.
Calculates the lexicogrammatical and functional features described by Biber (1985) <doi:10.1515/ling.1985.23.2.337> and widely used for text-type, register, and genre classification tasks.
Algorithms to speed up the Bayesian Lasso Cox model (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and the Bayesian Lasso Cox with mandatory variables (Zucknick et al. Biometrical J, 2015 <doi:10.1002/bimj.201400160>).
Considering the singly imputed synthetic data generated via plug-in sampling under the multivariate normal model, draws inference procedures including the generalized variance, the sphericity test, the test for independence between two subsets of variables, and the test for the regression of one set of variables on the other. For more details see Klein et al. (2021) <doi:10.1007/s13571-019-00215-9>.